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Expecting the Unexpected: Emissions Uncertainty  
and Environmental Market Design†

By Severin Borenstein, James Bushnell, Frank A. Wolak,  
and Matthew Zaragoza-Watkins*

We study potential equilibria in California’s cap-and-trade market 
for greenhouse gases (GHGs) based on information available 
before the market started. We find large ex ante uncertainty in 
business-as-usual emissions and in the abatement that might result 
from non-market policies, much larger than the reduction that could 
plausibly occur in response to an allowance price within a politically 
acceptable range. This implies that the market price is very likely to 
be determined by an administrative price floor or ceiling. Similar 
factors seem likely to be present in other cap-and-trade markets for 
GHGs. (JEL D47, D81, Q54, Q58, R11)

There is broad consensus among economists that pricing greenhouse gases 
(GHGs), through either a tax or a cap-and-trade market, should be a central compo-
nent of a cost-effective climate policy. A substantial and predictable price on GHGs 
into the distant future provides incentives to limit activities that produce GHGs, make 
long-lived investments in existing lower-carbon technologies, and fund research and 
development of new approaches to reducing carbon emissions.1

Prices in existing cap-and-trade markets for GHGs, however, have at times been 
very volatile and have often been so low as to create little incentive to reduce GHG 
emissions. The European Union Emissions Trading System (EU-ETS), the world’s 
largest GHG market, experienced a sharp drop in prices, from above 20 euros per 

1 The largest share of GHGs is CO​​​​2​​​, which we discuss broadly as “carbon emissions” following the popular 
vernacular.
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tonne in early 2011 to below 4 euros in 2013.2 The European Commission responded 
in 2014 by reducing the emissions cap.3 The Regional Greenhouse Gas Initiative 
(RGGI), which covers electricity generators in the Northeastern United States, 
made a similar administrative reduction to the emissions cap in 2014 in response to 
persistently low allowance prices.4

In this paper, we study California’s cap-and-trade market for GHGs. The market, 
which covers emissions beginning in 2013, has the broadest scope of any GHG 
market in the world. It includes emissions from electricity generation, industrial 
production, and transportation fuels, which together comprise nearly all anthropo-
genic emissions except those from agriculture.5 Throughout the first six years, the 
program has seen prices at or very close to the administrative price floor. Our anal-
ysis finds that in the absence of such administrative intervention, extremely low or 
extremely high prices are the most likely outcomes.

Two factors drive this conclusion. First, there is a high level of ex ante uncertainty 
in future “business-as-usual” (BAU) emissions. BAU GHG emissions are closely 
tied to future economic activity and weather conditions (temperature and rainfall), 
which are very difficult to forecast. GHG emissions are also subject to the uncertain 
effects of non-market environmental policies, often referred to in policy debates as 
“complementary policies,” such as fuel-economy standards, mandated renewable 
generation shares of electricity production, and energy-efficiency standards.6 These 
uncertainties have long been recognized as an issue when forecasting both damages 
and mitigation costs,7 but they also create uncertainty in the amount of emissions 
abatement that will be necessary in order to attain a given cap level.

Second, over the range of GHG prices generally deemed politically acceptable, 
the predictable price response of GHG abatement is likely to be small compared 
to the uncertainty in emissions levels. In California, the typically-low elasticity of 
energy demand is lowered further by complementary policies, because they fre-
quently mandate actions that consumers might otherwise have chosen to take in 
response to a higher GHG price, such as buying a more fuel-efficient car. These 
factors are likely to be present in other regions with GHG cap-and-trade markets, 
because each has adopted a cap-and-trade market in concert with complementary 
policies to reduce capped emissions. The combination of a wide probability distri-
bution of BAU emissions and relatively price-inelastic supply of emissions abate-
ment results in outcomes skewed toward very high or very low prices.

2 The standard measure of GHGs is metric tonnes of CO​​​​2​​​ equivalent, CO​​​​2​​​e, in order to convert other greenhouse 
gases into a standardized climate change metric. One tonne of CO​​​​2​​​e is the quantity released from burning approx-
imately 114 gallons of pure gasoline.

3 The EU-ETS emissions cap reduction seemed to have relatively little effect until May 2017 when the price 
began to climb from about 4 euros per tonne, reaching over 24 euros in December 2018.

4 The RGGI cap reduction has had less effect. The December 2018 allowance auction cleared at $5.90 per tonne.
5 Neither the EU-ETS, nor RGGI include transportation fuels. RGGI includes only emissions from electricity 

generation.
6 The term “complementary policies” presents some irony, because in economic terms most of these programs 

are probably more aptly described as substitutes for a cap-and-trade program. However, these policies may increase 
the political acceptance of cap-and-trade markets by assuring cap-and-trade skeptics that certain pathways to GHG 
reduction will be required regardless of the allowance price. Some of these policies are also designed to address 
other market failures, such as innovation incentives or principal/agent conflicts in energy consumption.

7 When discussing controversies about mitigation costs, Aldy et al. (2010, p. 904) note that “[f  ]uture mitigation 
costs are highly sensitive to business-as-usual (BAU) emissions, which depend on future population and Gross 
Domestic Product (GDP) growth, the energy intensity of GDP, and the fuel mix.”
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In recognition of the problems created by uncertain allowance prices, economists 
have proposed hybrid mechanisms that combine emissions caps with administrative 
price collars that can provide both upper and lower bounds on allowance prices.8 
Such hybrid mechanisms can greatly reduce allowance price risk while ensur-
ing a better match between ex post costs and benefits (Pizer 2002). The fact that 
California’s allowance prices were higher than the other major GHG cap-and-trade 
programs from its inception through 2018 is almost certainly due to its relatively 
high price floor.

Using only information available prior to the commencement of California’s 
market, we develop estimates of the distribution of potential allowance prices that 
account for uncertainty in BAU emissions, the effect of complementary policies, 
and the price-responsiveness of abatement. Our analysis of the distribution of poten-
tial market equilibria proceeds in three stages. First, we estimate an econometric 
model of the drivers of BAU GHG emissions using time-series methods and use 
it to estimate the distribution of future BAU GHG emissions. Second, we account 
for GHG reductions from complementary policies and other “non-market” factors 
outside the cap-and-trade program. Third, we use a range of energy price elasticity 
estimates to account for the emissions abatement that could occur in response to the 
GHG emissions price.

Combining these analyses, we estimate the distribution of equilibrium allow-
ance prices. We find that, due to uncertainties in BAU emissions and in the quan-
tity of abatement available from non-market factors, the support of the distribution 
of abatement needed to meet an emissions cap is much broader than the amount 
of price-responsive abatement that could plausibly be provided within a politically 
acceptable price range. Therefore, regardless of the level at which the emissions 
cap is set, there will be a low probability of an “interior equilibrium” in which 
price-responsive abatement equilibrates emissions with that cap. Rather, the outcome 
is very likely to be driven primarily by administrative interventions at predetermined 
floor and ceiling prices.9

Based on the information available before the market opened, we find that  
California’s emissions cap for 2013–2020 was set at a level that implied a 94.3 per-
cent probability the allowance market would clear at the price floor, with total emis-
sions below the cap. We find a 1.1 percent probability that the price would be in the 
interior equilibrium range, above the price floor and below the market’s soft price 
ceiling at which some additional allowances are released, described further below. 
The remaining 4.6 percent probability weight is on outcomes in which the price is 
at or above the soft price ceiling.

In July 2017, California adopted legislation extending the program to 2030 and 
setting much lower emissions targets for the additional decade. The legislation left 
many critical aspects of the extended program unsettled, including the price floor 
and ceiling mechanisms. Nonetheless, we also report results for a reasonable pro-
totype of a program running through 2030. We find that the emissions cap pro-
posed through 2030 is likely to yield substantially more balanced probabilities of 

8 See, for instance, Jacoby and Ellerman (2004) and Burtraw, Palmer, and Kahn (2009).
9 Or, in the case of EU-ETS and RGGI, ex post emissions cap adjustments, an alternative administrative 

intervention.
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outcomes at the price floor or price ceiling. Even in that analysis, however, we still 
find only a 20 percent probability of an interior equilibrium.

Unlike Weitzman’s (1974) seminal work on prices versus quantities, and much 
of the analysis that has applied that framework to cap-and-trade markets for pol-
lutants, ours is not a normative analysis.10 Rather, our positive empirical analysis 
demonstrates the high likelihood of very high or very low prices in California’s 
market for greenhouse gas emissions. While very high or low prices are not an 
economic impediment to the operation of cap-and-trade markets, they may be a 
political impediment, as they seem in practice likely to trigger ex post adminis-
trative interventions. Moreover, significant uncertainty about the allowance price 
is unlikely to provide the most effective signal for long-term investments in GHG 
emissions abatement technologies.

The large uncertainty in the level of BAU emissions from which reductions must 
occur has not been explicitly recognized in previous studies of cap-and-trade mar-
ket equilibria, which have tended to employ deterministic models.11 To account for 
uncertainty in key parameters, such as energy prices and macroeconomic growth, 
modelers sometimes performed sensitivity analyses, but the choice of which param-
eter values to include and the probability to assign to each parameter value has not 
been based on statistical distributions estimated from historical data, which lim-
its analysts’ ability to draw inferences about the relative likelihood of alternative 
scenarios. The most sophisticated of these studies is Neuhoff et al. (2006), which 
compares the EU ETS Phase-II cap level with 24 deterministic model-based projec-
tions. Assigning equal probabilities to each projection, the authors find that there is 
a significant chance that BAU emissions will fall below the cap. To limit the likeli-
hood of a price collapse, they conclude that regulators should set a more stringent 
emissions cap. In contrast, we explicitly model uncertain abatement demand and 
supply, concluding that these uncertainties are quite large compared to likely levels 
of price-responsive abatement. This implies a low probability of an interior equilib-
rium regardless of the stringency of the cap.

The remainder of the analysis proceeds as follows. Section I introduces 
California’s cap-and-trade market, and characterizes the set of possible market out-
comes given the attributes of the supply and demand for GHG emissions abate-
ment. Section II describes how we estimate the distribution of BAU GHG emissions 
over the 2013–2020 period using a cointegrated vector autoregression (VAR) model 
estimated using data from 1990 to 2010. In Section III, we explain how we incor-
porate the non-market factors that affect future GHG emissions. In Section IV, we 
analyze the likely impact that a GHG price would have on abatement. We present 
results in Section V under the baseline scenario for complementary policies and 
other non-market factors, and we also show how the cap-and-trade program might 
operate in the absence of complementary policies. Section VI briefly compares our 

10 See Newell and Pizer (2003) for an application of Weitzman’s analysis to a stock pollutant such as GHGs. 
See Newell, Pizer, and Raimi (2014) and Schmalensee and Stavins (2017) for overviews of cap-and-trade programs 
in practice to date.

11 To model equilibria in their respective markets, RGGI used the Regional Economic Modeling, Inc. model 
(RGGI 2005), the UK Department of Trade and Industry used ICF’s Integrated Planning Model (UK DTI 2006), 
and the California Air Resources Board (ARB) used ICF’s Energy 2020 model (ARB 2010a).
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estimated results to actual outcomes through 2015 and discusses analysis of an 
extended market out to 2030. We conclude in Section VII.

I.  The California Cap-and-Trade Market

California’s cap-and-trade program was established as part of ARB’s implemen-
tation of Assembly Bill 32, adopted in 2006. AB 32 also established a number of 
complementary policies and modified some existing programs, all in pursuit of 
reducing GHG emissions. California’s first cap-and-trade allowance auction took 
place on November 14, 2012, and compliance obligations began on January 1, 2013. 
At the time, the quantity of available allowances was set for 2013–2020, after which 
the future of the program was uncertain.

We focus on estimating the potential range and uncertainty in allowance demand, 
abatement supply, and prices over the original eight-year span of the market. We 
carry out the analysis based on estimates of the distribution of future emissions 
using data through 2010. These were the most up-to-date data available by late 2012, 
months before the market commenced operation. Presumably, the GHG emissions 
cap would have to be set at least that far in advance of the start of any cap-and-trade 
market. Consequently, our analysis addresses the question of what distribution of 
market outcomes a regulator could reasonably expect at the time the emissions cap 
is set.12

The eight-year market was divided into three compliance periods: 2013–2014, 
2015–2017, and 2018–2020. In the first compliance period, the market excluded 
tailpipe emissions from transportation and on-site emissions from small station-
ary sources (mostly residential and small commercial combustion of natural gas), 
known as “narrow scope” coverage. In the second compliance period, transportation 
and small stationary sources were also included, with the total known as “broad 
scope” coverage. In November of the year following the end of each compliance 
period, covered entities are required to submit allowances equal to their covered 
emissions for that compliance period. Banking allowances for later use is permitted 
with very few restrictions.

Allowances are sold quarterly through an auction held by ARB. There is an auction 
reserve price (ARP), which was set at $10.50 in 2013 and has thereafter increased 
each year by 5 percent plus the rate of inflation in the prior year. There is also an 
allowance price containment reserve (APCR) designed to have some restraining 
effect at the high end of possible prices by adding a limited number of allowances 
to the pool if the auction price hits certain price trigger levels. Of the 2,508.6 mil-
lion metric tonnes (MMT) of allowances in the program over the 8-year period, 
121.8 MMT were assigned to the APCR to be made available in equal proportions 
at allowance prices of $40, $45, and $50 in 2012 and 2013. After 2013, these price 
levels have increased annually by 5 percent plus the rate of inflation in the prior year.

12 In late 2013, the ARB finalized plans to link California’s cap-and-trade market with the market in Quebec, 
Canada, as of January 1, 2014. Our analysis does not include Quebec, because the analysis is based on information 
available in 2012. Quebec, with total emissions of roughly one-seventh California’s, was seen as a likely net pur-
chaser of allowances, which would increase somewhat the probability of higher price outcomes.
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Because of the relatively generous allowance quantities made available in the 
early year auctions, and the ability of ARB to shift some additional allowances from 
later years, emissions during the first two compliance periods were very unlikely 
to exceed the allowances available. This implies that the eight years of the market 
were likely to be economically integrated. As a result, we examine the total supply/
demand balance over the entire eight years of the program.13

As is standard in analyses of market mechanisms for pollution control, we pres-
ent the market equilibrium as the outcome of a demand for and supply of emis-
sions abatement. We define the demand for emissions abatement as the difference 
between BAU emissions and the quantity of allowances made available at the ARP.

What we term “abatement supply” in this characterization encompasses both 
price-responsive emissions reductions and reductions due to complementary pol-
icies. Also, we include reduced compliance obligations due to credit for emissions 
“offsets” (i.e., administratively verified reductions from emitters in locations or sec-
tors not covered by the program). Finally, California regulators have recognized the 
potential for activities that do not reduce actual emissions, but just change contrac-
tual counterparties in a way that reassigns responsibility for emissions to entities not 
covered by the program, known broadly as “reshuffling.”14 We incorporate reshuf-
fling in abatement supply as well. While incentives for offsets and reshuffling are 
affected by the price of allowances, previous analyses suggest that the bulk of this 
eligible activity would be realized at prices below or very close to the ARP. For pre-
sentational clarity, we also include additional allowance supply that can be released 
from the APCR at higher prices as part of abatement supply.15

The analytical approach is illustrated in Figure 1, which presents a hypothetical 
probability density function (PDF) of abatement demand quantities, BAU emissions 
minus allowances available below the APCR prices, along with one possible abate-
ment supply curve. We present the abatement supply curve beginning at the ARP 
with a quantity at that price equal to the sum of non-market abatement, which occurs 
regardless of the allowance price, and some very inexpensive abatement supply 
(mostly from offsets and reshuffling) that is likely to be cheaper than the ARP. The 
supply then increases as price rises to the APCR. At three price levels, extra allow-
ance supply from the APCR is released, followed by additional price-responsive 
abatement at prices above the APCR. In reality, the quantities in each component 
of the supply curve are uncertain so there is a probability distribution of abatement 
supply curves as well as abatement demand quantities. Nonetheless, this illustration 
demonstrates that the probability of an interior equilibrium depends upon the share 
of the area under the abatement demand PDF that overlaps with the interval under 
the (price-responsive) abatement curve between the floor and ceiling prices. The 
next section describes our methodology for estimating the PDF of the abatement 
demand, while Section III describes our methodology for estimating the PDF of the 
quantity of price non-responsive abatement (e.g., from complementary policies) and 

13 Borenstein et al. (2014) discusses the details of the compliance rules in more detail and the possibility of 
short-run mismatches between the release of allowances by ARB and the demand for allowances by compliance 
entities.

14 See Bushnell, Chen, and Zaragoza-Watkins (2014).
15 Equilibrium is determined by the net supply of allowances, so including a particular factor as an increase in 

abatement supply or decrease in abatement demand will not alter the analysis.
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Section IV describes our methodology for estimating the PDF of price-responsive 
abatement.

In its revised Scoping Plan of 2010, ARB’s preferred model projected that 63 
percent of emissions abatement would arise from complementary policies rather 
than from responses to the cap-and-trade program.16 It is important to emphasize 
that these reductions are not costless; indeed, many are likely to have abatement 
costs per tonne of GHG emissions greater than the allowance price. Rather, these 
reductions, and the accompanying costs, will be approximately independent of the 
level of the allowance price. Therefore, while these policies provide reductions and 
contribute to the goal of keeping emissions under the cap, they do not provide the 
price-responsive abatement that could help mitigate volatility in allowance prices.

The supply of price-responsive abatement is further limited by an allowance allo-
cation policy designed to protect in-state manufacturers that are subject to compe-
tition from out-of-state producers. These “trade exposed” companies receive free 
allowances based on the quantity of output (not emissions) that the firm produces. 
Such output-based allocation reduces the firm’s effective marginal cost of produc-
tion and, thus, reduces the pass-through of the allowance price to consumers, and the 
associated reduction in consumption of these goods. But it does so while retaining 
the full allowance price incentive for the firm to adopt GHG-reducing methods for 
producing the same level of output.17

Large amounts of abatement from complementary policies and other very 
low-cost sources, combined with relatively modest price-responsive abatement, sug-
gests a “hockey stick” shaped abatement “supply” curve, as illustrated in Figure 1.

16 ARB (2010b, p. 38, Table 10). This projection does not include the effects of exogenous energy price 
increases, reshuffling, or offsets.

17 For a detailed discussion of the economic incentives created by output-based allocation, see Fowlie (2012). 
If applied to a large enough set of industries or fraction of the allowances, Bushnell and Chen (2012) shows that 
the effect can be to inflate allowance prices as higher prices are necessary to offset the diluted incentive to pass the 
carbon price through to consumers.

Figure 1. Hypothetical Distribution of Abatement Demand and Supply
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A. Price Evolution and Estimated Equilibrium Price in the Market

The analysis we present here models abatement supply and demand aggregated 
over the eight-year span of the market. We calculate the equilibrium as the price 
at which the aggregate demand for abatement over the eight years is equal to the 
aggregate supply of abatement. Our primary analysis focuses on this program alone, 
assuming that the market is not integrated into a successor market or some geo-
graphically broader program. When the market commenced, there was no clarity on 
how the program would evolve after 2020 or other regional programs with which it 
might be merged.

Throughout this analysis, we assume that the emissions market is perfectly com-
petitive. In Borenstein et al. (2014), we analyze the potential for exercise of market 
power given the characteristics of supply and demand in the market. While we find 
a potential for short-term exercise of market power, we do not find a plausible incen-
tive to exercise market power in a way that would change the equilibrium price over 
the full 8-year course of the market.

At any point in time, two conditions will drive the market price of an allowance, 
an intertemporal arbitrage condition and a long-run market equilibrium condition. 
If the markets for allowances at different points in time are competitive and well 
integrated, with a sufficient number of risk-neutral participants, then intertemporal 
arbitrage will cause the expected price change over time to be equal to the nominal 
interest rate (or cost of capital).18 At the same time, the price level will be deter-
mined by the condition that the resulting expected price path, rising at the nominal 
interest rate until the end of 2020, would in expectation equilibrate the total supply 
and demand for allowances for the entire program.19

Throughout the market’s operation, new information will arrive about the demand 
for allowances (e.g., weather, economic activity, and the energy intensity of gross 
state product (GSP) in California) and the supply of abatement (e.g.,  supply of 
offsets, response of consumers to fuel prices, and the cost of new technologies for 
electricity generation). This sort of information will change expectations about 
the supply-demand balance in the market over the length of the program and thus 
change the current equilibrium market price. With risk-neutral traders, the price at 
any point in time should be equal to the expected present discounted value of all 
the possible future prices that equilibrate the realized supply (plus allowances and 
offsets) and realized demand for abatement. As discussed below, we approximate 

18 See Rubin (1996) and Holland and Moore (2013) for detailed analyses of this issue. Pizer and Prest (2016) 
show that with intertemporal trading and policy updating, regulators can exploit the arbitrage condition to imple-
ment the first-best policy.

19 Because of lags in information and in adjustment of emissions-producing activities, supply and demand will 
not be exactly equal at the end of the compliance obligation period. At that point, the allowance obligation of each 
entity would be set and there would be no ability to take abatement actions to change that obligation. The supply of 
allowances would have elasticity only at prices that trigger the APCR, where additional supply is released, and the 
level of a hard price cap, if one existed. Thus, the price would either be approximately zero (if there were excess 
supply) or at one of the steps of the APCR or the compliance penalty (if there were excess demand). Anticipating 
this post-compliance inelasticity, optimizing risk-neutral market participants would adjust their positions if they 
believed the weighted average post-compliance price outcomes were not equal to the price that is expected to equil-
ibrate supply and demand. Such arbitrage activity would drive the probability distribution of post-compliance prices 
to have a (discounted) mean equal to the equilibrium market price in earlier periods.
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this price evolution process by incorporating price-responsive abatement into the 
supply-demand analysis.

II.  Estimating Business-as-Usual Emissions

The greatest source of uncertainty in the market’s supply-demand balance is 
likely to be the level of emissions that would take place under BAU. Figure 2 pres-
ents annual covered GHG emissions in California in the four major sectors covered 
by the cap-and-trade program. The increased emissions during the 1995–2000 “dot-
com boom,” as well as the drop that began with the 2008 financial crisis, illustrate 
both that emissions are correlated with the macro economy and that meeting an 
emissions goal over an eight-year period could require much more or less abatement 
than would be implied from considering only the expected BAU level.20

We construct an econometric model using historical emissions and other eco-
nomic data to estimate the distribution of BAU emissions over the eight-year mar-
ket period that accounts for both uncertainty in the parameters of our econometric 
model and uncertainty in the future values of the shocks to our econometric model 
using the two-step smoothed bootstrap procedure described in online Appendix 
Section A.1.

To derive our estimate of the distribution of future GHG emissions covered by the 
program, we estimate a cointegrated vector autoregression model with determinants 
of the major components of state-level GHG emissions that are covered under the 
program and the key statewide economic factors that impact the level and growth 

20 In both 1997–2001 and 2007–2011, covered emissions changed by as much in absolute value as the entire 
emissions cap decline over 2013–2020.

Figure 2. California Emissions from Capped Sectors
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of GHG emissions.21 Due to the short time period for which the necessary disag-
gregated GHG emissions data have been collected, the model estimation is based 
on annual data from 1990 to 2010, which was the information that was available to 
policymakers in 2012, just before the market opened.

The short time series puts a premium on parsimony in the model. As a result, 
we use a seven-variable VAR model. We also impose the restrictions implied by 
cointegrating relationships between the elements of the seven-dimensional vec-
tor, which significantly reduces the number of parameters we must estimate to 
compute a distribution of future BAU values of these seven variables. The model 
includes three technical drivers of GHG emissions: in-state electricity production 
net of hydroelectricity production, vehicle-miles traveled (VMT), and the sum 
of non-electricity-generation natural gas combustion and industrial process GHG 
emissions.22 The model also includes the two most important economic factors that 
influence emissions: real GSP and an index of the real price of gasoline in California. 
Finally, to facilitate the estimation of the BAU distribution of future GHG emissions 
in the transportation and electricity sectors under different sets of complementary 
policies for reducing GHG emissions in these sectors, we also model the behavior 
of the emissions intensity of the transportation sector and of fossil-fuel electric-
ity generation in California. We simulate realizations from the distribution of BAU 
emissions from these two sectors as the product of a simulated value of sectoral 
emissions intensity and a simulated value of the economic driver of transportation 
(VMT) or electricity emissions (fossil-fuel electricity generation in California).

Summary statistics on the seven variables are presented in Table 1.
The data sources and the details of the cointegrated VAR specification are pre-

sented in online Appendix Sections A.1.2, A.1.3, and A.1.4. Our procedure for con-
structing the estimate of the distribution of BAU emissions for the 2013 to 2020 time 
period is presented in online Appendix Section A.1.5. We investigate the impact of 
model uncertainty in online Appendix Section A.1.6 by comparing the results of 
using different econometric models for historical GHG emissions to construct our 
estimate of the distribution of future GHG emissions. We obtain very similar mean 
forecasts and similar size confidence intervals for BAU emissions from 2013 to 
2020 across all of the models.

A. Results

The parameter estimates for the seven-variable VAR are shown in online Appendix 
Table A.5. Table 2 presents the means and standard deviations of the estimated dis-
tribution of the seven elements of the VAR for each year from 2013 to 2020.

For each draw from this estimated distribution, we calculate annual GHG emis-
sions from each sector category: transportation, electricity, and natural gas/industrial. 

21 VARs are the econometric methodology of choice among analysts to construct estimates of the distribution of 
future values (from 1 to 10 time periods) of macroeconomic variables and for this reason are ideally suited to our 
present task. Stock and Watson (2001) discuss the successful use of VARs for this task in a number of empirical 
contexts.

22 The electricity variable accounts for demand changes (after adjusting for imports as discussed below) as well 
as uncertainty and trends in hydroelectricity production, both of which are driven in part by variation and trends in 
weather. We account for other zero-GHG generation sources—wind, solar, and nuclear—explicitly, as discussed 
below.
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Transportation emissions are the product of estimated VMT and estimated GHG 
intensity of VMT. Electricity emissions require adjusting estimated in-state genera-
tion net of hydro for generation from other zero-GHG sources (nuclear power, and 
renewables such as solar, wind, and geothermal) as described in online Appendix 
Section A.2.1.1, then multiplying the remainder, which is in-state fossil-fuel gen-
eration, by the thermal intensity of fossil-fuel generation. Natural gas/industrial 
emissions are taken directly from the draw.

The resulting realizations of emissions based upon the variable estimates in 
Table 2 are summarized in Table 3. Emissions from all sources in the program are 
shown in the Broad scope emissions column of Table 3. The final column presents 
the cumulative emissions covered under the cap-and-trade program, accounting for 
the fact that transportation emissions and some natural gas/industrial emissions 
were not included under the narrow scope emissions covered in 2013 and 2014.23

23 In online Appendix Section A.1.2, we explain how we decompose the natural gas/industrial emissions cate-
gory to approximate the share of emissions from this category that is covered in 2013–2014.

Table 1—Summary Statistics of Data for Vector Autoregression

Year Year
Mean SD Min Max Min Max

California generation net of hydro (TWh) 159.3 16.5 133.5 185.6 1996 2007
Vehicle miles traveled (billions) 299.7 27.0 258.0 329.0 1991 2005
Industry, natural gas and other emissions (MMT CO​​​​2​​​e) 114.6 4.6 106.6 123.9 2009 1998
Gross state product (real trillion $2015) 1.83 0.32 1.38 2.25 1992 2007
Wholesale SF real gasoline price index (Real ¢ 2015/gallon) 198.83 42.05 146.88 300.09 1998 2008
In-state electric thermal intensity (CO​​​​2​​​e tons/MWh) 0.462 0.056 0.372 0.581 2010 1993
Vehicle emissions intensity (CO​​​​2​​​e tons/1,000 VMT) 0.535 0.016 0.493 0.554 2010 2000

Note: Data are for 1990  –2010.

Table 2—Summary Statistics of Simulated VAR Variables

Calif. Vehicle Natural Real Gross state Therm. Trans.
elec. net miles gas, ind. gasoline product intensity intensity
of hydro traveled & other price index $2015 tons/ tons/1,000

TWh mill. miles MMT $2015 trillion MWh miles

2013 179.2 331.2 108.7 2.71 2.28 0.360 0.485
(21.5) (12.9) (10.2) (0.75) (0.24) (0.043) (0.027)

2014 181.3 334.9 108.4 2.78 2.33 0.355 0.482
(24.8) (14.7) (11.1) (0.83) (0.28) (0.045) (0.030)

2015 183.4 338.5 108.0 2.84 2.39 0.350 0.480
(25.9) (16.6) (11.9) (0.90) (0.31) (0.049) (0.034)

2016 186.0 342.5 107.5 2.90 2.44 0.346 0.479
(26.3) (18.5) (12.7) (0.98) (0.34) (0.052) (0.036)

2017 186.8 346.5 107.3 2.96 2.50 0.342 0.476
(28.6) (20.0) (13.6) (1.05) (0.38) (0.055) (0.039)

2018 189.6 350.5 107.0 3.01 2.56 0.338 0.475
(30.3) (21.7) (14.5) (1.08) (0.42) (0.058) (0.042)

2019 191.5 354.7 107.0 3.07 2.621 0.334 0.473
(31.1) (23.8) (15.16) (1.19) (0.452) (0.062) (0.044)

2020 193.4 359.0 106.9 3.13 2.684 0.330 0.471
(32.8) (25.4) (16.22) (1.27) (0.495) (0.065) (0.047)

Notes: Estimates are mean values of 1,000 draws. Values in parentheses are the standard deviations of 1,000 draws.
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Figure 3 illustrates the actual values for broad scope emissions through 2015 and 
the estimated mean, 2.5th, and 97.5th percentile from the distribution of emissions 
from 2011 through 2020, based on data through 2010. The vertical dots show the 
distribution of simulation outcomes. The stair-step line in Figure 3 shows the emis-
sions cap for each year of broad scope coverage, 2015–2020. For the two years of 
narrow-scope coverage, 2013 and 2014, the emissions cap was within 10 MMT of 
our mean BAU estimate of those emissions. As can be seen from Figure 3, many 
realizations fall below the level of capped emissions out to 2020. This is a large 
contributing factor to the expectation of low allowance prices.

In the next two sections, we describe how we combine these estimates of 
BAU emissions with abatement opportunities to estimate the distribution of the 
supply-demand balance in the cap-and-trade market.

III.  Impact of Price Non-Responsive Abatement

This section describes how we model a number of possible effects of other state 
energy policies and other activities that were expected to change covered emissions 
independent of the price in the cap-and-trade market. For each policy, we assume 
that abatement will fall within a specific range between a more effective abatement 
case and a less effective abatement case. We then sample from a symmetric ​β​(2, 2)​​ 
distribution to create a random draw of abatement for each policy from within our 
assumed range.24 The resulting range of potential price non-responsive abatement 

24 A ​β​(2, 2)​​ distribution looks like an inverted “U” with endpoints, in this case, at the low and high scenario 
abatement levels. The ​β​(2, 2)​​ is symmetric between the endpoints. We have also experimented with the assumption 
that the abatement follows a triangular distribution with the low and high ends of the support at the low and high 
abatement scenarios and the mode at the average of the low and high scenarios. The results differed very little from 
using the ​β​(2, 2)​​ distribution.

Table 3—Simulated Emissions

Broad scope emissions Cumulative capped emissions
MMT MMT

2013 355.7 150
(20.4) (11)

2014 356.5 301
(23.0) (22)

2015 357.1 658
(24.5) (42)

2016 358.6 1,016
(26.5) (66)

2017 359.3 1,376
(28.3) (92)

2018 361.2 1,737
(30.3) (120)

2019 362.6 2,099
(32.5) (150)

2020 364.0 2,463
(34.5) (183)

Notes: Estimates are mean values of 1,000 draws. Values in parentheses are the standard devi-
ations of 1,000 draws.
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from each source is shown in the lower panel of Table 4. We combine each of the 
1,000 realizations from the BAU emissions distribution from the VAR with a sim-
ulated outcome of the price non-responsive abatement to derive a distribution of 
1,000 emissions outcomes before price-responsive abatement.

A. Zero-Carbon Electricity Generation and Energy Efficiency

In the case of electricity, the main complementary policies are the Renewables 
Portfolio Standard (RPS), which in 2011 was increased to mandate that 33 percent 
of California’s electricity consumption must come from qualified renewable sources 
by 2020; and energy efficiency (EE) investments. We treat the RPS as reducing the 
quantity of carbon-emitting electricity generation, rather than the carbon intensity 
of generation. In the same way as described in the previous section, we adjust the 
realization of in-state electricity generation net of hydro to account for the expected 
increase in renewable generation required to meet the 33 percent RPS. The expected 
impacts of expanding the RPS on renewable generation in future years are based on 
external data sources discussed in online Appendix Section A.2.1.2. We multiply the 
value of in-state, fossil-fueled electricity generation net of this realization of renew-
able generation by the realization from our estimated distribution of the emissions 
intensity to obtain a realization of the GHG emissions from fossil-fueled generation 
units located in California.

There is a strong preexisting trend of energy efficiency improvements already 
present in the time-series data we used to simulate the distribution of future BAU 
emissions. As discussed in online Appendix Section A.2.1.2, we therefore make 
no further adjustments to account for increased energy efficiency beyond those 
effects already (implicitly) integrated into our estimate of the BAU emissions 
distribution.
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Figure 3. California Broad Scope Mean Emissions Forecast and Confidence Intervals,  
2011–2020 (Actual Data, 1990–2015)

Notes: Solid line shows actual values. Stairstep line shows annual broad scope cap level.
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B. Transportation

We incorporate the impact of stricter GHG policies in the transportation sector 
(improved vehicle fuel economy and increases in the use of biofuels) through adjust-
ments to the emissions intensity of VMT realization from the estimated distribution. 
As described in online Appendix Section A.2.1.3, the low end of this range of emis-
sions intensity is based on a model that ARB used to forecast the impact of GHG 
policies on vehicle fleet composition and fuel economy. The high end of this range 
incorporates both ARB’s 2011 forecast and the BAU emissions intensity estimation 
from the VAR. A random draw of emissions intensity from this range, using a ​β​(2, 2)​​ 
distribution, is then multiplied by the realization of VMT from our estimated dis-
tribution to arrive at a BAU realization of emissions from the transportation sector.

C. Energy Price Changes Exogenous to Cap-and-Trade

We also account for the effects on emissions of two potential energy price changes 
not attributable to the cap-and-trade program. Real prices of electricity in California 
were expected to rise over the 2013–2020 period due to capital expenditures on 
transmission and distribution, increased use and integration of renewable energy, 
and other factors. We take a 2012 forecast of those increases and apply a range of 
own-price elasticity assumptions, as discussed in online Appendix Section A.2.1.4. 
The real price of transportation fuels was also likely to rise due to the cost of using 
more renewable fuels, as mandated under the Low Carbon Fuel Standard Program 
(LCFS). We consider a range of possible estimates of this effect. Our estimates do 
not explicitly anticipate the 2014–2015 collapse of oil prices and the associated 

Table 4—Summary of Abatement Supply

Abatement over 8 years (MMT)

Mean SD 2.5% 97.5%

Allowance price responsive abatement
Electricity

Price response (floor) 3.4 0.5 2.5 4.3
Price response (ceiling) 9.7 1.4 7.2 12.3

Transport
Price response (floor) 3.6 0.5 2.6 4.5
Price response (ceiling) 12.1 1.8 9.0 15.5

Natural gas
Price response (floor) 11.2 2.4 6.6 15.6
Price response (ceiling) 31.6 6.7 18.9 44.1

Price non-responsive abatement
Zero-carbon electricity and energy efficiency 63.1 10.2 43.4 84.7
Transportation 77.9 47.0 4.2 179.6
Exog. elec price effects 9.6 1.4 7.0 12.2
Emissions offsets 97.8 14.6 71.2 124.9
Electric imports and reshuffling 63.2 20.7 27.0 101.2

Total at price ceiling 365.0
Total at price floor 329.7

Note: Price responsive abatement based upon a ​β​(2, 2)​​ distribution where the endpoints are determined by elastici-
ties of −0.1 to −0.2 for electricity and gasoline, and −0.1 to −0.3 for natural gas.
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decline in transport fuel prices, but our estimate of the distribution of BAU gasoline 
prices implies a wide range of possible prices, as shown in Table 2.

D. Emissions Offsets

As in nearly all GHG cap-and-trade programs in the world, California covered 
entities are allowed to meet some of their compliance obligations with offset credits. 
Each entity can use offsets to meet up to 8 percent of its obligation in each compli-
ance period. In theory, this means that over the eight-year program, up to 218 MMT 
of allowance obligations could be met with offsets.25 In online Appendix Section 
A.2.1.5, however, we discuss the difficulty of getting approval for offset projects and 
the fact that the 8 percent share is not fungible across firms or time, both of which 
are likely to lead to substantially lower use of offsets. We account for the uncertainty 
in the quantity of offsets likely to be available over the course of the program by 
taking draws from our best estimate of the range of possible values of offsets.

E. Imported Electricity and Reshuffling

California’s cap-and-trade program attempts to include all emissions from 
out-of-state generation of electricity delivered to and consumed in the state. 
However, due to the physics of electricity and the extent of the Western electricity 
grid, which includes states from the Pacific Ocean to the Rocky Mountains, it is not 
possible to identify the specific generation resource supplying imported electric-
ity. Depending on how the GHG content of imports is administratively determined, 
electricity importers have an incentive to engage in a variety of trades that lower the 
reported GHG content of their imports, a class of behaviors broadly labeled reshuf-
fling, as discussed earlier.26 As explained in online Appendix Section A.2.1.6, we 
use information on long-term contracts with out-of-state coal plants to determine the 
range of possible reshuffling and its impact on allowance demand to cover imported 
electricity.

IV.  Price-Responsive Abatement

In online Appendix Section A.2.2, we discuss in detail the potential abatement 
from higher allowance prices. These assessments rely in part on regulatory decisions 
that affect how allowance prices will be passed through, as well as on previous esti-
mates of demand elasticities for goods and services that produce GHG emissions. 
Here, we summarize the range of potential impacts we consider and discuss them 
briefly. The underlying assumptions are shown in more detail in online Appendix 
Table A.15. It is clear from this discussion that the uncertainty in BAU emissions, as 

25 Because the offset rule allows 8 percent of total obligation to be met with offsets, it effectively expands the 
cap to solve the equation ​C − 0.08C  =  2,508.6MMT​. This implies that ​C  =  2,726.7​ and the total offsets allowed 
would be ​2,726.7 − 2,508.6  =  218.1​.

26 Also known as “contract reshuffling” or “resource shuffling.” Reshuffling, an extreme form of emission leak-
age, refers to cases in which actual economic activity doesn’t change, but generation from a cleaner source is 
reassigned by contract to a buyer that faces environmental regulation, while generation from a dirtier source is 
reassigned to a buyer that does not.



3968 THE AMERICAN ECONOMIC REVIEW NOVEMBER 2019

well as in the price non-responsive abatement possibilities, are much larger than the 
potential impact from demand response to cap-and-trade allowance prices.

To evaluate the impact of allowance prices on the demand for GHG emissions, 
it is important to recognize that the actual allowance price path will evolve over 
time as more information arrives about whether the market is likely to have insuf-
ficient or excess allowances over the eight-year life of the program, as mentioned 
in Section I. Even if very high or low prices were to eventually occur, they may not 
be observed until much later in the program, when participants are fairly certain of 
whether the market will be short or long allowances. The price in each year will 
reflect a weighted average of the probabilities of different equilibrium outcomes, 
eventually ending at the aggregated equilibrium price. In online Appendix Section 
A.2.2.1, we present the method we use to account for this price evolution. In brief, 
for all draws, the price at the beginning of the program is assumed to equal the 
probability-weighted average of the distribution of (discounted) 2020 equilibrium 
prices. For each individual draw, the price is assumed to follow a linear path from 
the weighted-average starting price (i.e.,  in 2013) to the 2020 equilibrium price 
associated with that draw.

For gasoline and diesel price response, we assume 100 percent allowance price 
pass-through based on many papers that study pass-through of tax and crude 
oil price changes (see, for example, Marion and Muehlegger 2011). We use an 
elasticity assumption that is below most long-run elasticity estimates, because 
improved vehicle fuel economy is a large part of the difference between long-run 
and short-run elasticity estimates. Fuel economy standards, however, already 
induce higher fuel economy than consumers would otherwise choose. For natural 
gas, elasticitity estimates are taken from the recent literature. The pass-through 
of allowance prices to retail natural gas was still unclear in 2012, but seemed 
likely to be well below 100 percent. Still, we present results assuming 100 per-
cent pass-through, because less-than-complete pass-through may be politi-
cally untenable in the longer run, and because even with this upper bound case, 
price-responsive abatement is relatively small. For electricity, elasticities are also 
taken from the literature, but pass-through seemed likely in 2012 to be quite com-
plicated, with residential customers protected from these costs and commercial 
and industrial customers absorbing greater than 100 percent pass-through to cover 
the shortfall, as discussed in online Appendix Section A.2.2.3. The effect on abate-
ment, however, is nearly the same as imposing 100 percent pass-through on all 
customers, so for simplicity we do so.27

In online Appendix Section A.2.2.6, we also discuss possible changes in indus-
trial emissions and explain why, due to a combination of low own-price demand 
elasticities and policies designed to lower pass-through of the allowance price by 
industrial emitters, these changes are likely to be very small.

Our analysis of price-responsive abatement incorporates a wide range of pos-
sible demand elasticities for electricity, transportation fuels, and natural gas used 
in residential, commercial, and industrial settings. It does not, however, explicitly 
account for price-responsive technological breakthroughs in low-GHG energy 

27 This would not be the case if residential customer demand were much more or less elastic than demand from 
commercial and industrial customers. There is not, however, consistent evidence in either direction.
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sources. Such innovation is one compelling argument for a GHG price, but there are 
no credible estimates of the magnitude of the innovation price response. Moreover, 
while a GHG price would likely increase R&D budgets for low-GHG technologies, 
the outcome of increased research expenditures is highly unpredictable. It could 
lead eventually to a breakthrough that could displace fossil fuels even at a very low 
GHG price, but it could instead lead to little significant progress. Finally, the inno-
vation pathway for a GHG price response is very likely to have long lags, which 
would mean little significant GHG emissions reduction during the eight-year market 
period that we study. For these reasons, we do not attempt to explicitly incorporate 
price-responsive technological breakthroughs. By omitting this effect, our results 
are likely overstating the probability of very high prices, but for the market and 
timespan we study, the omission is not likely to have a large effect.

The potential range of abatement from each category of price-responsive and 
price non-responsive sources are shown in Table 4. To put these figures in context, 
it is useful to recall from Table 3 that the standard deviation of simulated covered 
BAU emissions over the eight-year program is 183 MMT. By comparison, the mean 
of our simulated total price-responsive abatement due to an allowance price increase 
from the floor (APR) to the ceiling (highest tier of the APCR) is 35.1 MMT, about 
one-fifth of one standard deviation of the BAU distribution.

V.  Estimated Market Clearing in the Cap-and-Trade Market

To estimate the distribution of possible price outcomes in the allowance market, 
we combine the 1,000 realizations from the distribution of BAU emissions with 
1,000 realizations from the distribution of additional abatement sources discussed in 
Sections III and IV. Each of the abatement effects is drawn independently. However, 
the two largest sources of complementary policy-driven abatement, GHG abate-
ment from vehicles and electricity generation, are positively correlated with BAU 
emissions by construction. In the case of vehicles, this is because the GHG intensity 
of VMT is multiplied by the realization of BAU VMT to obtain the realization of 
transportation GHG emissions. Similarly, GHG emissions from electricity genera-
tion from each draw are the interaction of the realization of thermal intensity and the 
realization of kilowatt-hours of thermal generation, after deducting the realization 
of renewable generation.

Given the very limited amount of data available on abatement activities and our 
use of sources from the literature for many of the abatement assumptions, basing 
correlations of BAU emissions and GHG abatement on empirical analysis isn’t likely 
to be credible. Nor, unfortunately, are even the signs of these correlations clear.28 
Thus, from each realization of BAU emissions, we subtract an independently dis-
tributed draw from the assumed distribution of each source of additional abatement.

We consider four mutually exclusive and exhaustive potential market clearing 
price ranges, as was illustrated in Figure 1: (i) at or near the ARP, with all abatement 

28 For instance, lax offset policy could be positively correlated with lax policy toward reshuffling, or an inability 
to control reshuffling could lead to a looser allowance market and put less pressure on regulators to approve contro-
versial offset applications. Similarly, it is unclear whether higher BAU emissions associated with a strong economy 
would be positively or negatively correlated with the willingness of utilities (and their regulators) to reshuffle con-
tracts or the willingness of regulators to accept a higher level of offsets.
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supply coming from price-inelastic and very low-cost abatement, plus offset supply 
(some of which may require a price slightly above the auction reserve); (ii) notice-
ably above the ARP, though without accessing any of the allowances in the APCR, 
with marginal supply coming from price-elastic sources; (iii) at or above the low-
est trigger price of the APCR, but at or below the highest APCR trigger price; and 
(iv) above the highest price of the APCR.29

Based on the 1,000 realizations from the distribution of BAU emissions, com-
plementary policies, offsets, reshuffling, and price-responsive abatement, Figure 4 
presents our estimate of the PDF of the abatement demand quantity and an esti-
mated abatement supply curve, along with 2.5 percent and 97.5 percent bounds on 
the curve. This is effectively the empirical implementation of Figure 1. Our results 
suggest a 94.3 percent probability of the price equilibrating at or very near the ARP, 
implying that the emissions cap was set high relative to our estimated distribution 
of BAU emissions, complementary policies, and the offsets and reshuffling that 
would likely take place at very low prices. Of the remaining probability, we esti-
mate a 1.1 percent chance of a price below the lowest APCR trigger price, what 
we have referred to as an interior solution. We estimate a 3.4 percent chance of a 
price within the APCR price range, and a 1.2 percent probability of a price above 
the highest APCR trigger price. Thus, while the likelihood is low, if emissions were 
high enough to drive the market off the floor, the price would be more than twice as 
likely to end up in or above the APCR than at an interior equilibrium, where price 
equilibrates a fixed supply with demand.

Of course, the low probability of an interior solution results to some extent 
from the emissions cap being set very high relative to the distribution of BAU 
emissions net of price-inelastic policies. This likely was not intentional. As of 
late 2010, after the state’s emissions reductions targets had been set, ARB still 
projected emissions from capped sectors during the decade of 2010–2020 to 
remain level at about 400 MMT per year absent expanded policy intervention 
(ARB 2010c).30 One might ask how high the probability of an interior solution 
could have been if the cap were set at a lower level. We investigated this question 
by rerunning our analysis at every integer cap level between 2,000 and 3,000 
MMT to find the cap level that would yield the highest probability of an interior 
solution. We found that occurred at an emissions cap of 2,391 MMT (about 295 
MMT lower than the actual cap), resulting in a 9.2 percent probability of an inte-
rior solution with the remaining probabilities fairly balanced between lower- and 
higher-priced outcomes.31 In other words, due to the relatively low price respon-
siveness of abatement, particularly in the presence of complementary policies, and 

29 California considered program modifications to address the possibility of the price containment reserve being 
exhausted, but none was adopted prior to the launch of the program. We do not address how high the price might go 
in case (iv). This would be difficult to do even in the absence of this policy uncertainty, because it will be greatly 
influenced by the state’s other policy responses. We simply report the estimated probability of reaching this case and 
note that prices could be much higher than the highest APCR price.

30 To construct their forecast of 2020 BAU emissions, ARB combined sector-specific average annual emissions 
levels for the three most recent years for which the GHG Emissions Inventory data were available (2006–2008) 
with sector-specific growth projections from the California Energy Commission’s 2009 Integrated Energy Policy 
Report. Therefore, ARB’s methodology explicitly omitted BAU uncertainty and implicitly supposed that the emis-
sions intensity of activity in each sector would, absent further policy intervention, remain constant through 2020.

31 A 42 percent probability of an outcome at or near the ARP, a 35 percent probability of an outcome in the 
APCR, and a 16 percent probability above the APCR.
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the wide support of the probability density of the BAU emissions, we estimate that 
no emissions cap level would yield even a 10 percent probability of an interior  
solution.

A. How Much Difference Do Complementary Policies Make?

As Section III discussed, we make a number of assumptions about complemen-
tary policies in order to adjust the BAU estimates to reflect changes that are likely 
to occur during 2013–2020. An important question, motivated by the results just 
discussed, is how much the probability distribution of equilibrium allowance prices 
would change if complementary policies were not present and the cap-and-trade 
program were relied upon as the primary mechanism for reducing GHGs.

Removing complementary policies has two significant effects on the analysis. 
First, it lowers the level of price non-responsive abatement, which in this case 
causes the price-responsive region of the abatement supply curve to coincide with 
a higher probability region of the BAU emissions distribution. Second, it increases 
the price-elasticity of abatement supply by removing the dampening effects of the 
complementary policies, as discussed earlier.

In this subsection, we reestimate the distribution of possible outcomes under a 
counterfactual without complementary policies. To do this, we make assumptions 
about alternative paths of regulatory rules, such as the RPS mandate and automo-
tive fuel-economy standards. We also make assumptions about price-responsive 
consumption changes that would result if complementary policies were not pur-
sued. Thus, we are assessing a more idealized implementation of California’s 
cap-and-trade program, with no other programs to reduce GHG emissions, but all 
sectors fully exposed to the price of allowances.

To implement this approach, we make the following changes in abatement 
assumptions:
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	 (i)	 Renewable electricity output is frozen at its 2012 level;32

	 (ii)	 No effect of complementary or other policies on the realization of vehicle 
emissions intensity from the VAR;

	 (iii)	 No LCFS, so no impact of the LCFS on the price of fuels;

	 (iv)	 Higher price elasticity of response of energy demand to energy price 
changes.33

The effects of assumptions (i) through (iii) are indicated in the first three lines of 
the lower panel of Table 4, which presents the magnitudes of these shifts of abate-
ment supply that are removed. The effects of assumption (iv) are slightly more com-
plicated and amount to roughly doubling the price responsiveness of abatement. 
The details are described more completely in Section A.3.1 of the online Appendix.

Under this scenario with no complementary policies, our BAU distribution esti-
mate yields a substantially smaller chance of the market clearing at or very close to 
the price floor, 83.1 percent versus 94.3 percent, and a larger probability of an inte-
rior solution in which the market clears at a price above the ARP but still below the 
APCR, 6.2 percent versus 1.1 percent under the baseline scenario. The probability 
of very high prices more than triples, with a 7.4 percent probability of settling in the 
APCR, and a 3.3 percent probability of exhausting the APCR.

While eliminating complementary policies substantially changes the probabili-
ties, it does not change our fundamental finding that the great majority of the proba-
bility distribution lies outside the area of an interior equilibrium. Over 90 percent of 
the outcome distribution still occurs at the administratively-determined price floor 
and ceiling constraints on price, or above the APCR in a range that is likely to be 
politically unacceptable.

VI.  Market Performance to Date and Program Extension

Since the first allowance auction in November 2012, the market performance has 
been consistent with expectations of excess allowance supply. In the 21 quarterly 
auctions through 2017, the allowance price averaged $0.67 above the floor, and 
5 auctions (February 2016 through February 2017) failed to sell all of the allow-
ances on offer, setting the price at the floor.34 This softness in the allowance market 
reflects the gap between the reported actual emissions under the program in its first 
years of operation and the level of the cap.

In Table 5, we take a closer look at the emissions results for the year 2015. The 
top panel of Table 5 compares our estimated distribution to 2015 reported values 
for the seven variables in the VAR of BAU emissions. The bottom panel combines 

32 This is based on forecasts of renewable generation costs as of 2012, which suggested that neither wind nor 
solar would be cost competitive during 2013–2020, even with a GHG price in the range of the APCR.

33 More specifically, elasticities for transportation fuels, natural gas, and electricity are all drawn from a distri-
bution that ranges from −0.3 to −0.5.

34 These statistics describe the front-year allowance auctions. Auctions for later-year allowances, which take 
place at the same time, have generally yielded lower prices.
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our estimates of abatement with our BAU projections to compare our distribution 
of forecast emissions after abatement with the actual measured emissions by sector. 
These values reflect the distribution of projected BAU emissions, less exogenous 
and price-responsive abatement, as described in the previous section. Note that off-
sets, which are not directly attributable to any of these specific sectors, are not cap-
tured here.

Table 5 indicates that despite the perception of a soft emissions market, 2015 
emissions were slightly above our mean estimate. In fact, the upper panel shows 
that other than VMT being slightly lower than our mean forecast, all other variables 
in the VAR deviated from the mean forecast in the direction that would increase 
GHG emissions.35 The bottom panel shows that every sector except one, electricity 
import emissions (which include both real reductions and reshuffling), produced net 
emissions (after abatement) above our mean forecast. The low allowance price and 
total emissions relative to the cap do not seem to be a result of emissions outcomes 
below expectations.

A. Extension of Program through 2030

In July 2017, California adopted Assembly Bill 398, extending the current 
cap-and-trade program through 2030. Several details of the new program remain 
unresolved at the time of this writing, but the annual emissions cap will be reduced 
from 330 MMT in 2020 to 200 MMT by 2030. In an extension of this paper, 
Borenstein, Bushnell, and Wolak (2017) applies the same approach to estimating the 
supply-demand relationship under rules that are likely close to those that will gov-
ern the extension of the market out to 2030, utilizing the data on market outcomes 
through 2015 and estimating market outcomes for 2016–2030. The authors find that 
the emissions cap through 2030 lies much closer to the center of the “adjusted” 
BAU distribution (i.e., after adjusting the distribution for complementary policies, 

35 The “NA” for the industry, natural gas, and other category reflects the fact that we do not observe the coun-
terfactual emissions from these sources without abatement.

Table 5—Actual versus Forecast Values of Model Variables for 2015

2015 Mean 2.5% 97.5%
actual forecast forecast forecast

California generation net of hydro (TWh) 182.201 183.360 139.447 246.703
Vehicle miles traveled (billions) 335 338 308 372
Gross state product (real trillion $2015) 2.48 2.39 1.85 3.03
Wholesale SF real gasoline price index (real ¢ 2015/gallon) 229.02 284.06 157.27 475.91
In-state electricity thermal intensity (tons/MWh) 0.364 0.350 0.265 0.457
Industry, natural gas, other (MMT before abatement) NA 107.955 87.359 134.235
Vehicle emissions intensity (tons/1,000 VMT) 0.473 0.460 0.425 0.488

Transport emissions (MMT after abatement) 158.5 155.6 130.9 181.6
In-state electricity emissions (MMT after abatement) 43.0 39.1 21.8 64.7
Industry, natural gas, other (MMT after abatement) 108.0 106.1 85.5 132.2
Electricity import emissions (MMT after abatement) 30.7 32.5 27.7 37.2

Total broadscope emissions (MMT after abatement) 340.3 333.3 296.8 377.6
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exogenous energy price changes, offsets, and reshuffling). As a result, under the 
primary analysis with a hard price ceiling of $85 in 2030 (in 2015 dollars), they esti-
mate a 46 percent probability of the equilibrium price being at the price floor, a 34 
percent probability of the price ceiling, and a 20 percent probability of an outcome 
between the floor and the ceiling. The higher estimated probability of an interior 
equilibrium results from a combination of the cap level being close to the center of 
the “adjusted” BAU distribution and an assumption of higher price elasticities due to 
estimating over a time period that is nearly twice as long as the originally-legislated 
eight-year market.

The outcome of that analysis again makes clear that the probability of an interior 
equilibrium depends very much on the level of the cap compared to the adjusted 
BAU distribution. Still, the analysis through 2030 demonstrates that even if the cap 
lies very close to the center of the adjusted BAU distribution and abatement is much 
more price-elastic, the probability of an interior solution remains low.

VII.  Conclusion

If cap-and-trade programs for greenhouse gases are to successfully expand around 
the world, it is important to understand the possible outcomes of these markets. We 
have analyzed supply and demand in the California cap-and-trade market over its 
first authorized period, 2013–2020, in order to estimate the distribution of possible 
price outcomes and the factors that could drive those outcomes. We find that great 
uncertainty associated with BAU emissions creates a wide range of possible allow-
ance demands. Combining this with a steep supply curve of abatement creates an 
inflexible net allowance supply. These two findings suggest that absent administra-
tive restrictions, the price of allowances in the market would likely be extremely 
low or high.

Our analysis has demonstrated two implications of using cap-and-trade mecha-
nisms for addressing GHG emissions that do not seem to have been widely appre-
ciated. First, there is substantial uncertainty in the BAU emissions from which any 
assessment of needed abatement must start. Typically, analyses of targets for GHG 
reduction programs have taken BAU emissions as a known quantity. Our analysis 
suggests that BAU uncertainty is likely to be at least as large as uncertainty about 
the effect of abatement measures. Second, over the range of prices that have been 
considered politically acceptable, at least in California, there is likely to be rela-
tively little price elasticity of emissions abatement. This is due in part to the demand 
for emitting GHGs and the lack of scalable cost-effective abatement technologies, 
but exacerbated by the complementary policies, such as the renewable portfolio 
standard and auto fuel-economy standards, that have been adopted by California. 
These complementary policies, analogues of which exist in all other regions with 
cap-and-trade markets, effectively mandate many of the changes that consumers and 
producers might otherwise have made in response to an emissions price.

The “hockey stick” shape of the abatement supply curve, driven by the large quan-
tity of abatement required by complementary policies and then the inelasticity of 
additional supply beyond that, combined with significant uncertainty in the demand 
for abatement, driven by uncertainty in BAU emissions, implies that extreme prices 
(both high and low) are most likely. Using the information available at the time the 
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market began, we find a 94.3 percent probability that the market would have excess 
allowances, leaving the price at or very close to the administrative floor. But we also 
find about a 4.6 percent chance that the price would rise to the point of triggering 
regulatory intervention to contain further increases. We estimate only a 1.1 percent 
probability of the market clearing in an intermediate region that is not primarily 
determined by the price containment policies. These results might be interpreted 
as demonstrating only that California’s emissions cap was set “too high,” thereby 
driving prices to the floor. However, our sensitivity analysis demonstrates that even 
if the cap were set with a goal of maximizing the likelihood of an intermediate price, 
such an outcome would arise with less than a 10 percent probability.

Some might also infer that the likelihood of extreme-price outcomes would be 
greatly reduced if the cap-and-trade market were established for a much longer 
period, such as many decades, because the elasticity of abatement supply is likely to 
be larger over a longer period of time. While this view of abatement supply elasticity 
is almost surely correct, two factors suggest that prices in a longer cap-and-trade 
market may not be less extreme. First, a cap-and-trade market established for a 
longer period of time is likely to face greater uncertainty about whether politicians 
will be willing to stick with a given capped quantity throughout the market period.36 
Second, although the abatement supply elasticity would likely be greater over a 
longer period, so would the uncertainty of BAU emissions. California’s program 
has now been extended to the year 2030, with much more ambitious reduction tar-
gets. Still, even with the tighter cap and longer time horizon for price-responsive 

36 Such uncertainty seems well-founded given recent emissions cap reductions in both RGGI and EU-ETS.
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abatement to work, Borenstein, Bushnell, and Wolak (2017) estimates only a 20 
percent chance of an intermediate price outcome by 2030.

While California may be somewhat unusual in factors that make its abatement 
supply curve inelastic, our analysis in Borenstein et al. (2016) suggests that other 
cap-and-trade markets for GHGs could potentially face similar concerns. Other 
regions do have access to larger amounts of GHG abatement with costs ranging 
from $20 to $60/tonne, primarily through the ability to switch electricity pro-
duction from coal to natural gas or renewable sources. However these regions 
also face significant uncertainty in BAU emissions that it seems could exceed 
the range of price-responsive abatement supply. A detailed empirical analysis of 
these other markets is beyond the scope of this paper, but is a potentially valuable 
exercise. The relevance of our findings to cap-and-trade markets for other pol-
lutants, such as SO​​​​2​​​ or NO​​​​x​​​, is simply that it is critical to understand the ex ante 
uncertainty in emissions in comparison to the potential for price-responsive abate-
ment. In the cases of SO​​​​2​​​ and NO​​​​x​​​ there was greater availability of cost-effective 
abatement technologies at a politically acceptable cost than is currently the case 
for GHGs.

Another reaction to our findings has been to conclude that pricing greenhouse 
gases is an ineffective policy as compared to technology standards and direct regu-
lation. Our work does not support this inference. Pricing GHGs creates incentives 
for technological advance, and could create large incentives for switching from 
high-GHG to low-GHG technologies as their relative costs change. The magnitudes 
of these effects could be quite large, but they are extremely uncertain, consistent with 
our conclusion that the probability of an interior solution in a cap-and-trade market 
is quite low. Furthermore, while we demonstrate that one should expect large uncer-
tainty in the implied allowance prices from a cap-and-trade mechanism, there is also 
substantial uncertainty about the effectiveness and the costs of non-market-based 
regulations directed at reducing carbon emissions.
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This appendix presents detailed descriptions of the modeling methods, assumptions, and additional results
from the paper “Expecting the Unexpected: Emissions Uncertainty and Environmental Market Design.” The
Appendix is organized into three major sections. Section A.1 provides a description of the primary method
and data we use to estimate the distribution of future business-as-usual (BAU) greenhouse gas (GHG)
emissions, as well as three alternative approaches varying in sophistication and parsimony. Section A.2
details how we construct price non-responsive abatement, price-responsive abatement, and the aggregate
equilibrium price in the cap-and-trade market. Section A.3 presents additional estimates derived using
alternative assumptions and modeling approaches outlined in the main text.

A.1 Modeling Business as Usual GHG Emissions

This section presents the details of our cointegrated vector autoregression (VAR) modeling framework and
the methodology we employ to estimate the joint distribution of annual BAU GHG emissions from 2013 to
2020. There are three sources of uncertainty associated with modeling BAU emissions over 2013 to 2020. The
first source is uncertainty over the correct parametric form of the true data generation process. The second
source is uncertainty over the value of the vector of parameters of the true data generation process. The
third source is uncertainty over the future values of unobservable (to the econometrician) factors driving the
data generation process. Our modeling framework accounts for the second and third sources of uncertainty,
and our sensitivity analysis assesses the impact of the first source of uncertainty.

The remainder of this section presents the details of our co-integrated vector autoregression (VAR)
modeling framework and the methodology we employ to estimate the joint distribution of annual BAU GHG
emissions from 2013 to 2020. To assess the sensitivity of our estimate of the joint distribution of future BAU
emissions to our parametric econometric model choice, we also present estimation and simulation results for
three alternative statistical models for BAU emissions. There is significant agreement between the mean
forecast of annual broad scope GHG emissions and mean forecast of cumulative covered GHG emissions for
the period 2013 to 2020 from these models. The models produce somewhat different confidence intervals for
GHG emissions over the 2013 to 2020 period, but they all support our conclusion that BAU GHG emissions
uncertainty creates a low probability of an interior allowance price equilibrium in the cap-and-trade program.
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A.1.1 Overview of Estimation

Several features of our co-integrated VAR are chosen to match the time series relationships between the
seven variables implied by economic theory and existing state policies to determine BAU GHG emissions.
We allow for the fact that all seven variables exhibit net positive or negative growth over our sample period
and model them as stochastic processes that are second-order stationary in growth rates rather than second-
order stationary in levels. The results of unit root tests reported below for each of the individual time series
are consistent with this modeling assumption. We also impose restrictions on the parameters of the VAR
implied by cointegrating relationships between these seven variables that are supported by the results of
cointegration tests reported below. Engle and Yoo (1987) show that imposing the parameter restrictions
implied by cointegrating relationships between variables in a VAR improves the forecasting accuracy of the
estimated model. We have confirmed this result by comparing the size of the confidence intervals for BAU
emssions from our VAR model with and without the restrictions on the parameters of the VAR implied by
these cointegrating relationships imposed. The confidence intervals without the cointegration restrictions
imposed are uniformly larger for all years from 2013 to 2020.

The cointegrated VAR relies on seven annual magnitudes for the sample period 1990 to 2010. Let
Xt = (X1t, X2t, ..., X7t)

′ denote the vector composed of the following annual variables:

X1t = In-state California electricity production net of hydroelectric generation (TWh)
X2t = Total Vehicle-Miles Travelled (VMT) (Thousands of Miles)
X3t = GHG from Non-Electricity Natural Gas Combustion and Other Industrial Processes (MMT)
X4t = Real Retail Gasoline Price Index
X5t = Real Gross State Product (GSP) ($2015)
X6t = Emissions Intensity of In-State Thermal Generation (Metric Tonnes/MWh)
X7t = Emissions Intensity of VMT (Metric Tonnes/Thousand Miles)

where the definitions of the units abbreviations are: TWh = terawatt-hours, MMT = millions of metric
tonnes, VMT = vehicle miles traveled, MWh = megawatt-hours. All dollar magnitudes are expressed in
2015 real dollars, converted using the annual California Consumer Price Index (CPI-U). All GHG emissions
are in metric tonnes of CO2-equivalents. We include real Gross State Product (GSP) to capture the empirical
regularity observed both over time and across jurisdictions that a higher level of economic activity leads to
greater energy consumption and GHG emissions. The price of gasoline reflects the fact that changes in
transport fuel prices change the energy intensity of economic activity and total vehicle miles traveled.

We estimate the VAR in terms of the logarithms of the elements Xt = (X1t, X2t, ..., X7t). We then
use a bootstrap-based re-sampling scheme to compute an estimate of the distribution of Xt from 2013 to
2020 that accounts for both estimation error in the parameters of the VAR and uncertainty in the future
realizations of the stochastic process driving the VAR. A number of transformations of several elements of
Xt are required to simulate the distribution of GHG emissions for 2013 to 2020. In the next subsection, we
discuss estimation of the VAR and how it is used to simulate future values of the elements of Xt. In the
following subsection, we explain the transformations of the simulated value of Xt used to derive estimates
of the distribution of BAU GHG emissions from 2013 to 2020.

A.1.2 Data Sources and Construction

To compute the GHG emissions intensities of the in-state electricity production and the transportation
sector from 1990 to 2010 that enter the VAR model, we require data on the annual emissions from in-state
electricity production and annual emissions from the transportation sector to enter the numerator of each of
these intensities. Annual emissions from the large industrial processes and the residential and commercial
natural gas sector from 1990 to 2010 is the final GHG emissions-related time series required to estimate the
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VAR.1 To construct these data, we start with data on annual emissions for each covered sector in California
for 1990 to 2010.

Annual emissions levels for each covered sector are taken from the 1990-2004 Greenhouse Gas Emissions
Inventory and the 2000-2014 Greenhouse Gas Emissions Inventory (hereafter, Inventory).2 This is the longest
series of consistently measured emissions data and the basis for developing the 1990 statewide emissions level
and 2020 emissions limit required by AB 32. The annual Inventory dataset was prepared by California Air
Resources Board (ARB) staff and relies primarily on state, regional or national data sources, rather than
individual facility-specific emissions. The Inventory’s top-down approach to quantifying emissions differs
importantly from the bottom-up method of accounting for facility-specific emissions under the cap-and-
trade program. In particular, the Inventory likely overstates emissions from industrial activity relative to
those covered in the first compliance period of the cap-and-trade program.

We investigate the impact of this difference by comparing the Inventory data to annual data collected
under the Mandatory Reporting Regulation (MRR), which is the methodology used to calculate an entity’s
compliance obligation under the cap-and-trade program.3. From 2013 onward the MRR dataset was used
to officially assign emissions obligations to covered entities and is therefore the highest quality measure of
emissions under the cap-and-trade program. Prior to 2013 the MRR data were non-binding and used to
give covered entities experience with the reporting interface. We therefore do not rely upon data prior to
2013. For the covered years 2013 and 2014 we aggregate emissions across four source categories (domestic
electricity, imported electricity, transportation, and natural gas/industrial) and compare the 2 year average
for these sectors to the same aggregated averages from the emissions inventory data. This comparison is
used to generate an adjustment factor that calibrates the emissions inventory data so that it aligns perfectly
with the MRR data in 2013-2014 and applies this adjustment to all prior years of the emissions inventory
data.

One remaining adjustment necessary for the first compliance period was isolating the component of
natural gas emissions that were produced by large industrial sources that were directly covered under the
program from its start in 2013. Comparing the MRR and Inventory industrial emissions data series shows
annual Inventory industrial emissions to be fifteen percent higher than MRR industrial emissions, on average.
We address this difference by forecasting industrial capped source emissions in the first compliance period
using the Inventory industrial emissions data series adjusted downward by fifteen percent. The remaining
15 percent of industrial emissions are assigned to the natural gas/other category.

The remaining data that enter the VAR come from a variety of California state and federal sources:
California GSP is collected from the Bureau of Economic Analysis (BEA).4 Gasoline prices are a price

index for the San Francisco Bay Area from the Bureau of Labor Statistics.5 In-state electric generation is
collected from the California Energy Commission (CEC).6 All dollar figures are adjusted to constant 2015
dollars using the California consumer price index.7

Additionally, we adjust transportation sector emissions to account for differences between how emissions
and driving activity are measured. Our primary measure of VMT is compiled from a series of state-level trans-
portation surveys administered by the National Highway Transportation Safety Administration’s (NHTSA)
Office of Highway Information (OHI). These data capture on-road VMT and were independently constructed

1Emissions from the off-road consumption of diesel also comprises a small component of the “other” category.
2The Inventory is available at: http://www.arb.ca.gov/cc/inventory/inventory.htm.
3Information on the MRR is available at: http://www.arb.ca.gov/cc/reporting/ghg-rep/reported-data/ghg-reports.htm.
4Gross Domestic Product by State is available at: http://www.bea.gov/regional/index.htm#data.
5See https://alfred.stlouisfed.org/series?seid=CUURA422SS47014. We use these data rather than price data from the Energy

Information Administration by state, because the EIA data do not go back to the 1970s, as we need for the two-sample error
correction model described below. We adjust this nominal price index for inflation.

6In-state California electric generation and consumption are available from the CEC at http://energyalma-
nac.ca.gov/electricity/index.html.

7Available at http://www.dof.ca.gov/Forecasting/Economics/Indicators/Inflation/documents/BBCYCPI0519.xlsx.
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Table A.1: VAR Estimation Dataset

Year California Nat. Gross St. Therm. Trans.
Electricity Vehicle Miles Gas, Ind. Gasoline Product Intensity Intensity

net of Hydro Traveled & Other Price ($2015 (tons/ (tons/1000
(Twh) (Billions) (MMT) Index Trillion) MWh) Miles)

1990 146.6 259 121.7 185.22 1.42 0.495 0.543
1991 142.8 258 118.3 173.40 1.40 0.495 0.532
1992 156.7 263 112.9 176.53 1.38 0.518 0.548
1993 137.2 266 110.9 174.50 1.38 0.581 0.528
1994 165.3 272 112.0 168.95 1.42 0.509 0.525
1995 140.4 276 110.1 168.06 1.48 0.488 0.530
1996 133.5 278 113.2 173.60 1.53 0.511 0.534
1997 136.1 279 119.0 166.34 1.69 0.493 0.541
1998 148.3 291 123.9 146.88 1.76 0.487 0.531
1999 152.0 300 123.5 165.96 1.86 0.508 0.530
2000 178.0 307 115.9 195.64 1.96 0.484 0.554
2001 177.5 311 113.8 184.10 1.90 0.474 0.550
2002 155.4 322 116.2 158.35 1.93 0.464 0.554
2003 158.0 324 113.8 188.39 2.00 0.438 0.542
2004 164.3 329 117.3 206.33 2.10 0.406 0.539
2005 161.8 329 114.3 232.51 2.18 0.400 0.545
2006 170.0 327 113.4 251.02 2.23 0.396 0.549
2007 185.6 328 109.5 273.18 2.25 0.393 0.546
2008 184.9 327 110.1 300.09 2.20 0.387 0.516
2009 178.7 324 106.6 227.17 2.14 0.397 0.502
2010 171.4 323 111.1 259.27 2.16 0.372 0.493

and reported by the states, rather than centrally calculated by OHI.
While these data measure on-road VMT, the cap-and-trade program caps emissions from all diesel and

gasoline combusted as transportation fuel in California, regardless of whether the fuel is combusted on-road
or off-road. To address this potential source of bias we deviate from ARB’s emissions categorization of
“transportation” by excluding GHG emissions from off-road vehicle activities, in favor of categorizing them
into “Natural Gas and Other.” Therefore, beginning with total transportation sector combustion emissions,
we partition emissions into on-road and off-road activities using the more granular activity-based emissions
values reported in the Inventory. The emissions levels reported in Figure 1 in the text reflect this partition of
on-road and off-road emissions. The details of this partitioning are further described in Section A.2. Table
A.1 presents the data used to estimate the econometric models described below.

A.1.3 Estimation of Cointegrated Vector Autoregression

Define Yit = ln(Xit) for i = 1, 2, ..., 7 and Yt = (Y1t, Y2t, ..., Y7t)
′. In terms of this notation a first-order VAR

can be written as
Θ(L) · Yt = µ+ εt (A.1)
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where L is the lag operator which implies, LkYt = Yt−k, I is a (7x7) identity matrix, Θ(L) is (7x7) matrix
function in the lag operator equal to (I − ΘL) where Θ is a (7x7) matrix of constants, µ is a (7x1) vector
of constants, and εt is a (7x1) white noise sequence with a (7x1) zero mean vector and a (7x7) covariance
matrix Ω. In terms of the lag operator notation (1− L) = ∆, so that ∆Yt = Yt − Yt−1.

Model (A.1) allows each element of Yt to be non-stationary (contain a unit root) and exhibit net positive
or negative growth over the sample period. A linear time series process that is stationary in first-differences
is also called an integrated process with the order of integration equation equal to 1. In the next subsection,
we perform several Dickey and Fuller (1979) tests and two of the Dickey-Fuller GLS tests proposed by Elliott,
Rothenberg, and Stock (1996) of the null hypothesis that the time series contains a unit root for each element
of Yt. All of these tests find little evidence against the null hypothesis that each element of Yt contains a
unit root. Diebold and Kilian (2000) present Monte Carlo evidence that the forecasting performance of a
univariate AR(1) model can be improved by using a unit root test to determine whether to use the levels or
first-difference version of the model. Our unit root tests are consistent with our decision to model the vector
∆Yt as 2nd-order stationary process.

Diebold and Kilian (2000, p. 287) also argue that “differencing provides insurance against problems due
to small-sample bias and explosive roots problems, at a cost.” They argue that the problems associated
with forecasting future values from an AR(1) process are most severe for situations with a small number of
observations and longer forecast horizons, where the insurance is more than worth the cost. Because our
empirical analysis relies on a small number of observations and has a relatively long forecast horizon, this
logic provides an additional reason, besides the results of our unit root tests, for specifying our VAR in
first-differences.

It is often the case that stationary linear combinations of non-stationary economic time series exist
because there are long-run economic relationships between these variables. This logic suggests that there
are linear combinations of the elements of Yt that are likely to be 2nd-order stationary in levels. Vector-
valued time series processes whose elements are 2nd-order stationary in first-differences and have stationary
linear combinations of the levels of their elements are said to be cointegrated. Engle and Granger (1987)
provide a complete discussion of this concept and its implications for the specification and estimation of
multivariate linear time series models. For a k-dimensional random vector, Yt, with each element stationary
in first-differences, the number of distinct stationary linear combinations of the elements of Yt is called the
cointegrating rank of the VAR. The cointegrating rank is also equal to the rank of the matrix Λ ≡ −(I−Θ).
The existence of cointegrating relationships among elements of Yt imposes restrictions on the elements of
Λ that will yield more precise estimates of the elements of Λ (and Θ) and shorter confidence intervals for
future values of GHG emissions.

Suppose that the rank of the matrix Λ is equal to r (0 < r < 7). This implies that the following error
correction representation exists for Yt:

∆Yt = µ+ ΛYt−1 + εt (A.2)

where Λ = − γα′ for γ a (7 x r) rank r matrix of parameters and α a (7 x r) rank r matrix of parameters.
Define the (r x 1) vector Zt = α′Yt which is composed of the stationary linear combinations of Yt. This
notation implies that ΛYt−1 is equal to −γZt−1.

Johansen (1988) devised a test of the cointegrating rank of a VAR whose elements are 2nd-order stationary
in first-differences. We utilize Johansen’s (1988) maximum likelihood estimation procedure to recover consis-
tent, asymptotically normal estimates of µ, Ω, and Λ with these co-integrating restrictions imposed. Using
these parameter estimates, we then compute an estimate of the joint distribution of (Y ′2013, Y

′
2014, ..., Y

′
2020)′

conditional on the value of Y2010 that takes into account both our uncertainty in the values of µ, Ω, and Λ
because of estimation error and uncertainty due to the fact that (Y ′2013, Y

′
2014, ..., Y

′
2020)′ depends on future

realizations of εt for t = 2011, ..., 2020. We then apply the transformation Xit = exp(Yit) to each element
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of Yt to obtain an estimate of the joint distribution of (X2013, X2014, ..., X2020) conditional on the value of
X2010.8

We employ a two-stage smoothed bootstrap approach to compute an estimate of the distribution of
(X ′2013, X

′
2014, ..., X

′
2020)′.9 The first step computes an estimate of the joint distribution of the estimates of

µ, Ω, and Λ by resampling from the smoothed empirical distribution of the (7x1) vector of residuals from the
estimated VAR with the restrictions implied by cointegration imposed. Specifically, let µ̂, Ω̂, and Λ̂ equal
the estimates of the elements of the VAR imposing the cointegration of rank r restriction that Λ̂ = − γ̂α̂′.
We compute

ε̂t = Yt − µ̂− Λ̂1Yt−1 (A.3)

for t =1991 to 2010. Note that we can only compute values of ε̂t for t =1991 to 2010, because our sample
begins in 1990 and the (t− 1)th observation is required to compute the value of ε̂t for period t = 1991. We
construct the kernel density estimate of the ε̂t as

f̂(t) =
1

Th7

T∑
t=1

K{ 1

h
(t− ε̂t)} (A.4)

where T is the number of observations, h is a user-selected smoothing parameter, and K(t) is a multivariate
kernel function that is everywhere positive and integrates to one. We use the multivariate normal kernel

K(x) =
1

(2π)7/2
exp(−1

2
x′x) where x ∈ <7

and h = 0.5. Our estimate of the distribution of GHG emissions from 2013 to 2020 is insensitive to the value
chosen for h, as long as it is less than 1.

We then draw T = 20 values from (A.4) and use the parameter estimates (µ̂, Ω̂, and Λ̂) and these draws
to compute re-sampled values of Yt for t = 1, 2, ..., T = 20. Let (ε̂m1 , ε̂

m
2 , ..., ε̂

m
20)′ denote the mth draw of

the 20 values of ε̂t from f̂(t). We compute the Y mt , the 20 resampled values of Yt for t =1991 to 2010, by
applying the following equation starting with the value of Yt in 1990 (Y m1990 = Y1990 for all m)

Y mt = µ̂+ I + Λ̂1Y
m
t−1 + ε̂mt . (A.5)

We then estimate the values of µ, Ω, and Λ by applying Johansen’s (1988) ML procedure using the Y mt
and imposing the cointegration rank restriction that Λ = − γα′. Call the resulting estimates µ̂m, Ω̂m, and
Λ̂m. Repeating this process M = 1000 times yields the bootstrap distribution of µ̂, Ω̂, and Λ̂. This step
accounts for the uncertainty in future values of Yt due to the fact that true values of the of µ, Ω, and Λ are
unknown and must be estimated.

To account for the uncertainty in YT+k due to future realizations of εt, for each m and set of values of µ̂m,
Ω̂m, and Λ̂m, we draw H = 10 values from f̂(t) in equation (A.4), calling these values (ε̂mT+1, ε̂

m
T+2, ...ε̂

m
T+H)′.

Using these draws and µ̂m, Ω̂m, and Λ̂m1 we compute future values YT+k for k = 1, 2, ...,H given the actual
value of YT using the following equation:

Y mT+k|T = µ̂m + (I + Λ̂m)Y mT+k−1|T + ε̂mT+k for k = 1, 2, ..., 10 (A.6)

8We carried out similar estimation using data through 2012. The procedure was identical, except it was no longer necessary
to simulate values for 2011 and 2012 to create simulated values for 2013 through 2020. For this reason, the confidence intervals
for future values of the elements of Xt from 2013 to 2020 based on data through 2012 were typically somewhat smaller than
those based on data up to 2010. We focus on the results using data through 2010, because those were the data available at the
time that final decisions on the market design were made in 2012.

9For a discussion of the smoothed bootstrap, see Efron and Tibshirani (1993).
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This yields one realization of the future sample path of Yt for t =2011, 2012,..., 2020. The elements
of Yt are then transformed to Xt by applying the transformation Xit = exp(Yit) to each element of Yt to
yield a realization of the future time path of Xt. The elements of Xt are then transformed to produce a
realization of the future time path of GHG emissions by each covered sector from 2011 to 2020, as described
in section A.1.5. This two-step process of computing µ̂m, Ω̂m, and Λ̂m and then simulating Y mT+k|T for k =
1, 2, ..., 10 replicated m = 1 to M = 1000 times produces 1,000 realizations from the simulated distribution of
(X ′2011, ..., X

′
2020)′. Discarding the first two elements of this vector yields a realization from the distribution

of (X ′2013, X
′
2014, ..., X

′
2020)′ conditional on data through 2010.

We explored a number of alternative approaches to computing the joint distribution (X2013, X2014, ..., X2020)′.
For example, rather than re-sampling from the smoothed distribution of the ε̂t, we applied the wild bootstrap
to generate the values of ε̂mt used in (A.5) to compute the Y mt for each value of t and m using the procedure
recommended by Davidson and Flachaire (2008). In the second step of this approach, we draw the values of

εT+k for k = 1, 2, ..., 10 from f̂(t) (equation (A.4)), as described above. The estimated joint distribution of
(X ′2011, ..., X

′
2020)′ from this procedure was virtually identical to that obtained from the two-step smoothed

bootstrap approach.

A.1.4 Unit Root/Cointegration Tests and Estimation of VAR

This subsection describes the results of the unit root tests for each of the individual elements of the vector
Yt, the results of the cointegrating rank tests for the vector autoregressive model for Yt, and presents the
parameter estimates of the VAR model used to estimate the distribution of (X ′2013, X

′
2014, ..., X

′
2020)′.

We present three versions of the Dickey-Fuller (DF) unit root tests for each element of Yt and report two
test statistics for each hypothesis test and two versions of the Dickey-Fuller GLS (DF-GLS) test proposed
by Elliott, Rothenberg and Stock (1996). Let Yit equal the ith element of Yt. The zero mean version of the
DF unit root test assumes Yit follows the model,

Yit = αYit−1 + ηit

meaning that Yit is assumed to have a zero mean under both the null and alternative hypothesis. The
hypothesis test for this model is H: α = 1 versus K: α < 1.

In Table A.2 we report two test statistics for this null hypothesis

ρ̂ = T (α̂− 1) and τ̂ =
α̂− 1

SE(α̂)

where α̂ is the ordinary least squares (OLS) estimate of α and SE(α̂) is OLS standard error estimate for
α̂ from a regression without a constant term and T is the number of observations in the regression. The
column labeled “Pr < ρ̂” is the probability that a random variable with the asymptotic distribution of ρ̂
under the null hypothesis is less than the value of the statistic in the column labeled “ρ̂”. The column
labeled “Pr < τ̂” is the probability that a random variable with the asymptotic distribution of the τ̂ under
the null hypothesis is less than the value of the statistic in the column labeled “τ̂”.

The second version of the unit root test assumes a non-zero mean. In this case the assumed model is:

Yit = µ+ αYit−1 + ηit

where µ 6= 0. The hypothesis test is still H: α = 1 versus K: α < 1. The two test statistics for this null
hypothesis are

ρ̂ = T (α̂− 1) and τ̂ =
α̂− 1

SE(α̂)

7



where α̂ is the OLS estimate of α and SE(α̂) is OLS standard error estimate for α̂ from a regression that
includes a constant term and T is the number of observations in the regression. The test statistics and
probability values are reported in the same manner as for the zero mean version of the test statistic.

The third version of the test assumes that the mean of Yit contains a time trend so that the assumed
model is:

Yit = µ+ νt+ αYit−1 + ηit

where µ 6= 0 and ν 6= 0. The hypothesis test is still H: α = 1 versus K: α < 1. The two test statistics for
this null hypothesis are again

ρ̂ = T (α̂− 1) and τ̂ =
α̂− 1

SE(α̂)

where α̂ is the OLS estimate of α and SE(α̂) is OLS standard error estimate for α̂ from a regression that
includes a constant term and a time trend, and T is the number of observations in the regression. The test
statistics and probability values are reported in the same manner as for the zero mean version of the test
statistic.

Table A.2 presents the results of these unit root tests for the seven elements of Yt. For all three versions
of the unit root test and two test statistics, there is little evidence against the unit root null hypothesis for
all seven elements of the Yt. In all but a few cases, the probability value is greater than 0.05, which implies
no evidence against the null hypothesis for a size 0.05 test of the null hypothesis. Although there are a few
instances of probability values less than 0.05, this is to be expected even if the null hypothesis is true for all
of the series, because the probability of rejecting the null given it is true for a 0.05 size test is 0.05.

The final variable in the first column of this table reports the results of these unit root tests applied to
the logarithm of annual broad scope emissions. For this variable, we find little evidence against the null
hypothesis of a unit root, which is consistent with this variable being stationary in first-differences.

Table A.3 reports the results of the DF-GLS tests with and without a time trend. The columns with the
heading τ̂ contain the values of the test statistic with one lag for the first-differenced or de-trended variable
in the DF regression. The columns with the heading “5% Critical Value” are the critical values for a size
α = 0.05 test of the null hypothesis of a unit root. The results of the DF-GLS tests are also consistent with
each of the elements of Yt having a unit root.

Table A.4 presents the results of our cointegration rank tests for the 1990 to 2010 period. This hypothesis
test is formulated in terms of the notation of the error correction version of the cointegrated VAR model:

∆Yt = µ+ ΛYt−1 + εt (A.7)

where Λ is (7x7) matrix that satisfies the restriction Λ = −γα′ and γ and α are (7 x r) matrices of rank
r. The hypothesis test is H: Rank(Λ) = r versus K: Rank(Λ) > r, where r is less than or equal to 7, the
dimension of Yt. Each row of Table A.4 presents the results of Johansen’s (1988) likelihood ratio test of the
null hypothesis that Rank(Λ) = r against the alternative that Rank(Λ) > r, for a given value of r. Johansen
(1995) recommends a multi-step procedure starting from the null hypothesis that Rank(Λ) = r = 0 and
then proceeding with increasing values of r until the null hypothesis is not rejected, or all null hypotheses
are rejected, in order to determine the rank of Λ. Rejecting the null hypothesis for all values of r would
imply that the elements of Yt are not cointegrated.

The column labelled “LR(r) ” is Johansen’s (1988) likelihood ratio statistic for the cointegrating rank
hypothesis test for the value of r on that row of the table. The column labelled “5% Critical Value” is
the upper 5th percentile of the asymptotic distribution of the LR statistic under the null hypothesis. The
column labelled “Eigenvalue” contains the second largest to smallest eigenvalue of the estimated value of
Λ. Let 1 > λ̂1 > λ̂2, ... > λ̂K equal the eigenvalues of the maximum likelihood estimate of Λ ordered from
largest to smallest. The LR(r) statistic for the test H: Rank(Λ) = r versus K: Rank(Λ) > r is equal to
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Table A.2: Unit Root Test Statistics (Data from 1990 to 2010)

Variable Type ρ̂ Pr < ρ̂ τ̂ Pr < τ̂
ln twh p hydro Zero Mean 0.04 0.6768 0.62 0.8405

Single Mean -5.18 0.3718 -1.49 0.5148
Trend -17.14 0.0370 -2.59 0.2873

ln vmt Zero Mean 0.04 0.6777 1.74 0.9755
Single Mean -1.95 0.7666 -2.15 0.2288

Trend 0.17 0.9928 0.05 0.9937
ln ngother industrial Zero Mean -0.01 0.6654 -0.34 0.5495

Single Mean -14.84 0.0136 -2.49 0.1328
Trend -16.49 0.0469 -2.52 0.3155

ln real gas price Zero Mean 0.07 0.6851 0.80 0.8765
Single Mean -2.00 0.7609 -0.74 0.8143

Trend -9.33 0.3785 -2.13 0.4976
ln real gsp Zero Mean 0.55 0.8045 1.00 0.9091

Single Mean -1.93 0.7689 -1.45 0.5360
Trend -15.59 0.0642 -1.82 0.6543

ln thermal intensity Zero Mean 0.35 0.7540 1.24 0.9384
Single Mean -0.25 0.9317 -0.12 0.9335

Trend -16.60 0.0451 -3.50 0.0680
ln transport intensity Zero Mean 0.12 0.6967 0.69 0.8551

Single Mean -5.39 0.3506 -0.78 0.8019
Trend -3.66 0.8848 -0.63 0.9645

ln broad emissions Zero Mean 0.005 0.7164 0.23 0.7219
Single Mean -2.53 0.7098 -1.19 0.6336

Trend -1.86 0.9651 -0.54 0.9716

Table A.3: DF-GLS Unit Root Test Statistics (Data from 1990 to 2010), Lag=1

Variable
Time Trend No Time Trend

τ̂
5 % critical value

τ̂
5 % critical value

ln twh p hydro -2.807

-3.485

-1.286

-2.559

ln vmt -1.036 -0.732
ln ngother industrial -2.443 -2.015
ln real gas price -1.984 -0.834

ln real gsp -2.181 -1.065
ln thermal intensity -2.418 -0.385
ln transport intensity -1.388 -1.249
ln broadscope emissions -0.948 -1.096

LR(r) = −T
K∑

j=r+1

ln(1− λ̂j)
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Following Johansen’s procedure, we find that the null hypothesis is rejected for r = 0 and r = 1, but we do
not reject the null hypothesis at a 0.05 level for r = 2 or for any value larger than 2. According to Johansen’s
procedure, this sequence of hypothesis testing results is consistent with the existence of 2 stationary linear
combinations of the elements Yt. We impose these co-integrating restrictions on the parameters of VAR model
(A.7) that we estimate to simulate the joint distribution of GHG emissions from 2013 to 2020. Imposing the
restrictions implied by the two cointegrating relationships between the elements of Yt reduces the number
of free parameters in the (7x7) matrix Λ from 49 to 28 (= (7x2)x2), the total number of elements in γ and
α. Consistent with the logic that imposing valid restrictions on parameters of a linear regression reduces
the variance of the resulting parameter estimates and therefore the variance of prediction errors for the
dependent variable, imposing these restrictions on our VAR reduces the variance and size of the pointwise
confidence intervals for the time path of GHG emissions from 2013 to 2020.

Table A.4: Cointegration Rank Test Using Trace (Data from 1990 to 2010)

H0: H1: Eigenvalue LR(r) 5% Critical Value
Rank=r Rank > r

0 0 0.9819 175.6422 123.04
1 1 0.8253 95.4034 93.92
2 2 0.7286 60.5073 68.68
3 3 0.5886 34.4269 47.21
4 4 0.4416 16.6652 29.38
5 5 0.1659 5.0110 15.34
6 6 0.0668 1.3827 3.84
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Table A.5 presents the results of estimating our co-integrated VAR model for Yt for the 1990-2010 sample
period in terms of the model notation given (A.7). The variable Λij in Table A.5 is the (i,j) element of Λ,
which also equals −γα′, and µj is the jth element of µ. The model was estimated under the assumption
that Λ has rank r = 2.10 We report the parameter estimates in terms of the elements of Λ rather than
in terms of γ and α because these parameters have the usual (dynamic) linear regression interpretation.
As Lutkepohl (1994) and Johansen (2005) emphasize this interpretation does not hold for the coefficients
of the cointegrating relationships. Johansen (2005) discusses issue and provides an interpretation for the
coefficients of cointegrating relationships.

Under the assumption that a rank r = 2 cointegrated VAR model is a valid description of the time
series properties of Yt, the null hypothesis that the 7-dimensional vectors εt t = 1, 2, ..., T in (A.7) are
independent and identically distributed with E(εt) = 0 and E(εtε

′
t) = Ω should not be rejected. Hosking

(1980) derives a multivariate portmanteau statistic that tests the null hypothesis that the disturbances to
an M-dimensional vector ARMA(p,q) process are independently and identically distributed M-dimensional
random vectors with mean zero and an arbitrary positive definite contemporaneous covariance matrix. Under
this null hypothesis, the portmanteau test statistic is asymptotically distributed as a chi-squared random
variable with M2(S− p− q) degrees of freedom, where S is the number of sample autocovariance matrices of
the vector of residuals from the estimated vector ARMA(p,q) model included in the statistic. This statistic
reduces to the standard univariate Box and Pierce (1970) statistic for the case that M=1. The first panel of
Table A.6 presents the values of the multivariate portmanteau statistic for S = 1, 2, ..., 5 for the rank r = 2
VAR for the 1990 to 2010 sample period. For all values of S, the p-value associated with the value of the
test statistic is significantly larger than 0.05, indicating that a size 0.05 test of the null hypothesis is not
rejected.

10We were concerned about the ability of the Johansen’s cointegration testing procedure to detect the rank of Λ. Therefore
we performed the following two Monte Carlo studies to investigate this question. First we took the parameters we estimated
for our rank 2 cointegrated VAR (given in Table A.5) and generated 1,000 samples of size 20 from this model assuming the
errors were multivariate normally distributed and performed the Johansen testing procedure of finding the smallest value of r
for which we did not reject the null hypothesis that the rank of Λ matrix was equal to r. We found that for approximately 90
percent of our resamples the procedure found r = 2 or r = 3 to be the rank of Λ. We then took the parameters we estimated
from a rank 1 cointegrated VAR and generated 1,000 samples of size 20 from this model assuming the errors were multivariate
normally distributed and performed the Johansen testing procedure. For this model we found that for approximately 90 percent
of our resamples the procedure found r = 1 or r = 2 to be the rank of Λ. Because our estimate of the distribution of BAU GHG
emissions for 2013 to 2020 did not appreciably change between a rank 1, 2, or 3 cointegrated VAR, this Monte Carlo evidence
increased our confidence in the usefulness of the Johansen testing procedure for determining the rank of Λ.
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Table A.5: Error Correction Vector Autoregression Parameter Estimates (Data from 1990 to 2010)

Equation Parameter Estimate Standard Variable
Error

∆ln twhp hydro µ1 2.05653 3.99821 1
Λ11 -1.06459 0.18122 ln twh p hydro(t−1)

Λ12 0.18190 0.32229 ln vmt(t−1)

Λ13 0.03400 0.30741 ln ngother industrial(t−1)

Λ14 0.39485 0.15354 ln real gas price(t−1)

Λ15 0.39086 0.21525 ln real gsp(t−1)

Λ16 0.56736 0.11427 ln thermal intensity(t−1)

Λ17 -0.44487 0.09247 ln transport intensity(t−1)

∆ln vmt µ2 2.59102 0.87295 1
Λ21 -0.01901 0.03957 ln twh p hydro(t−1)

Λ22 -0.20593 0.07037 ln vmt(t−1)

Λ23 -0.19805 0.06712 ln ngother industrial(t−1)

Λ24 -0.08705 0.03352 ln real gas price(t−1)

Λ25 0.13422 0.04700 ln real gsp(t−1)

Λ26 -0.03696 0.02495 ln thermal intensity(t−1)

Λ27 0.03228 0.02019 ln transport intensity(t−1)

∆ln ngother industrial µ3 5.88351 1.88197 1
Λ31 -0.13073 0.08530 ln twh p hydro(t−1)

Λ32 -0.44123 0.15170 ln vmt(t−1)

Λ33 -0.43607 0.14470 ln ngother industrial(t−1)

Λ34 -0.16004 0.07227 ln real gas price(t−1)

Λ35 0.32999 0.10132 ln real gsp(t−1)

Λ36 -0.03468 0.05379 ln thermal intensity(t−1)

Λ37 0.03450 0.04353 ln transport intensity(t−1)

∆ln real gas price µ4 14.74227 7.83613 1
Λ41 -0.06160 0.35517 ln twh p hydro(t−1)

Λ42 -1.19080 0.63165 ln vmt(t−1)

Λ43 -1.13893 0.60250 ln ngother industrial(t−1)

Λ44 -0.51755 0.30093 ln real gas price(t−1)

Λ45 0.75338 0.42187 ln real gsp(t−1)

Λ46 -0.23761 0.22395 ln thermal intensity(t−1)

Λ47 0.20523 0.18123 ln transport intensity(t−1)

∆ln real gsp µ5 6.73904 1.63997 1
Λ51 -0.23650 0.07433 ln twh p hydro(t−1)

Λ52 -0.47468 0.13219 ln vmt(t−1)

Λ53 -0.48162 0.12609 ln ngother industrial(t−1)

Λ54 -0.14398 0.06298 ln real gas price(t−1)

Λ55 0.40016 0.08829 ln real gsp(t−1)

Λ56 0.01009 0.04687 ln thermal intensity(t−1)

Λ57 0.00020 0.03793 ln transport intensity(t−1)

∆ln thermal intensity µ6 -2.07239 3.67504 1
Λ61 0.26105 0.16657 ln twh p hydro(t−1)

Λ62 0.08335 0.29624 ln vmt(t−1)

Λ63 0.11318 0.28257 ln ngother industrial(t−1)

Λ64 -0.03927 0.14113 ln real gas price(t−1)

Λ65 -0.17368 0.19785 ln real gsp(t−1)

Λ66 -0.11032 0.10503 ln thermal intensity(t−1)

Λ67 0.08448 0.08500 ln transport intensity(t−1)

∆ln transport intensity µ7 1.38462 1.63480 1
Λ71 -0.07057 0.07410 ln twh p hydro(t−1)

Λ72 -0.09104 0.13178 ln vmt(t−1)

Λ73 -0.09566 0.12570 ln ngother industrial(t−1)

Λ74 -0.02021 0.06278 ln real gas price(t−1)

Λ75 0.08862 0.08801 ln real gsp(t−1)

Λ76 0.01440 0.04672 ln thermal intensity(t−1)

Λ77 -0.00966 0.03781 ln transport intensity(t−1)
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Table A.6: Portmanteau Test Statistics of Model Residuals

Model Lag Statistic p-value
Rank = 2 Cointegrated V AR 1 42.3699 0.9111

2 102.8449 0.4735
3 147.1996 0.6943
4 198.9458 0.6084
5 264.7963 0.2707

Two Sample Error − Correction Model 1 8.2422 0.5674
2 20.5808 0.3017
3 26.5530 0.5275
4 40.3913 0.2787
5 50.3961 0.2438

Bivariate Model 1 0.5815 0.9810
2 2.1195 0.9860
3 5.4634 0.9670
4 7.9841 0.9740
5 14.5774 0.8332

A.1.5 Simulating the Distribution of BAU GHG emissions for 2013-2020

As discussed in the text, California’s cap-and-trade program phases in the covered entities in two tranches.
Our approach simulates the distribution of BAU emissions from Phase I entities (narrow scope) and Phase
II entities (broad scope) over the entire post-sample period. Phase I, in effect during the first compliance
period of 2013 and 2014, covers emissions from in-state and imported electricity generation and emissions
from large industrial operations. Phase II, in effect for the second and third compliance periods, 2015-2017
and 2018-2020, expands the program to include combustion emissions from transportation fuels and emissions
from natural gas and other fuels combusted at residences and small commercial establishments. In order
to simulate covered emissions for 2013-2020, we do three transformations of the simulated values from the
VAR: (a) parsing GHG emissions from non-electricity natural gas combustion and other industrial emissions
between narrow scope and broad scope categories, (b) deriving GHG emissions from in-state electricity
generation, and (c) deriving GHG emissions from transportation.

GHG from Non-Electricity Natural Gas Combustion and Other Industrial Processes: We parse X3t into the
portion of these emissions that are and are not covered by the program under the narrow scope during
2013 and 2014. Based on historical data, we assume that 59 percent of these emissions are from industrial
processes and natural gas combustion by large industrial sources and are therefore included in narrow scope
emissions that are covered by the emissions cap during the first two years of the program. The remaining 41
percent of industrial GHG and other natural gas emissions are included in broad scope emissions that are
covered by the program from 2015 through 2020.

Electricity Sector Emissions: While GHG from Non-Electricity Natural Gas Combustion and Other In-
dustrial Processes (X3t) is already in terms of metric tonnes of GHG, in order to obtain the other two
components of total GHG emissions covered under the program – electricity generation and transportation –
we need to transform components of the simulated values. For the realization of the production of electricity
in California net of hydroelectric generation in year t, X1t, we subtract the anticipated amount of renewable
and nuclear energy produced in year t, as discussed below. The remaining residual production is assumed
to be provided by thermal generation. This residual amount is multiplied by the thermal intensity, X6t to
derive emissions from in-state electricity generation, which are included in the cap-and-trade program in all
years from 2013 to 2020.

Imported electricity is a substantial category of emissions covered under the state’s cap-and-trade pro-
gram, likely to constitute more than 10 percent of total emissions. However, due to the physics governing
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the operation of an integrated electricity grid, it is impossible to partition aggregate GHG emissions from
generation units outside California into those caused by electricity imports into California and those caused
by serving electricity demand outside of California. Hobbs, Bushnell, and Wolak (2010) and Bushnell, Chen,
and Zaragoza-Watkins (2014) discuss this issue and its implications for the design of the California market
for GHG emissions. Consequently, GHG emissions from electricity imports deemed to be covered by the
cap-and-trade program are determined largely by an administrative process set by ARB.

Historically, the specific energy deemed to be “delivered” to California is the result of the financial
contracting decisions of the importing firm, not the result of the actual flows of electrical energy into the
state. Specifically, coal-fired electricity would be deemed to be “delivered” to California because a coal-fired
power plant outside of California contracted with a buyer in California to supply electricity. The incentive
of California load-serving entities to claim electricity from GHG emissions-intensive sources is “delivered” to
California changes dramatically with the introduction of a cap-and-trade program that puts a price on GHG
emissions from electricity imports. Consequently, claimed GHG annual emissions from electricity imports
from 1990 to 2010 are unlikely to be informative about claimed emissions from electricity imports during the
cap-and-trade program. For these reasons, we do not include GHG emissions from electricity imports in any
of our models for BAU emissions. We instead use the administratively determined value for GHG emissions
from electricity imports from ARB’s MRR for 2012 of 40.17 MMT and adjust this value for our estimated
amount of reshuffling and other changes in imports during that year.

Transportation Emissions: We calculate transportation emissions much the same way as electricity sector
emissions. Both total VMT (X2t) and the emissions intensity of VMT (X7t) are simulated for the years
2015-2020, the years in which transportation emissions are covered by the cap-and-trade program. For each
of the 1000 simulated paths of the VAR variables, these two simulated values are multiplied together to yield
an annual value for transportation emissions.

Adding together the emissions for each of the three sectors gives the simulated annual total covered
GHG emissions. Summing these annual simulated emissions for the years 2013-2020 produces the simulated
aggregate GHG emissions over the life of the program. By carrying out 1000 simulations, as described above,
we derive an estimate of the distribution of BAU GHG emissions from 2013 to 2020.

A.1.6 Alternative Approaches to Modelling BAU Emissions

In order to assess the sensitivity of our estimate of the joint distribution of annual GHG emissions for 2013
to 2020 to our modeling assumptions, this section considers three alternative methodologies for recovering
an estimate of this distribution.

A.1.6.1 Two-Sample Error Correction Model

The first alternative methodology utilizes a two-equation model that takes advantage of the availability of a
longer time series for the four non-GHG emissions-related variables in the VAR. This approach first estimates
a cointegrated vector autoregression for the four non-GHG emissions variables on a sample that starts in
1975 and ends in 2010. Let Zt = (Y1t, Y2t, Y4t, Y5t)

′ equal this 4-dimensional vector. Then a three-variable
model using Et = (Y2t, Y5t, Y6t)

′ with the contemporanous first-difference of Zt as a vector of covariates and
an error correction term is estimated.

Variables that start in 1990 are:

exp(E1t) = GHG from Non-Electricity Natural Gas Combustion and Other Industrial Processes (MMT)
exp(E2t) = Emissions Intensity of In-State Thermal Gen. (Metric Tonnes/MWh)
exp(E3t) = Emissions Intensity of VMT (Metric Tonnes/Thousand Miles)
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Variables that start in 1975 are:

exp(Z1t) = CA electricity production net of hydroelectric generation (TWh)
exp(Z2t) = Total VMT (Thousands of Miles)
exp(Z3t) = Real Retail Gasoline Price Index
exp(Z4t) = Real Gross State Product ($2015)

Consistent with the unit-root test results presented in subsection A.1.4, the first difference of Yt and Zt
are each assumed to be 2nd-order stationary. We model ∆Zt from 1976 to 2010 as a cointegrated VAR
process:

∆Zt = ν + ΠZt−1 + ηt. (A.8)

Table A.7 presents the results of Johansen’s test for the cointegrating rank for Π for the sample period 1975
to 2010. The results of this testing procedure are consistent with assuming that the 4× 4 matrix Π is rank
1. The size 0.05 test of the null hypothesis that r = 0 is rejected, but the null hypothesis is not rejected for
r ≥ 1. We then apply Johansen’s maximum likelihood procedure to estimate ν, Π and the covariance matrix
of ηt in (A.8).

We model ∆Et from 1991 to 2010 as an error-correction model treating ∆Zt as a vector of pre-determined
regressors and include an error correction term in each equation, as shown in (A.9).

∆Et = µ+ φwt−1 + Γ∆Zt + εt (A.9)

where wt = β′Yt is the stationary linear combination of the seven elements of Yt implied by our earlier
hypothesis-testing result that the elements of Yt are cointegrated. There are two possible reasons that this
two-sample model could lead to a more precise estimate of the joint distribution of GHG emissions from 2013
to 2020. First, as noted above, our estimates of the parameters of (A.8) take advantage of a significantly
longer time series on Zt. Second, we include ∆Zt in (A.9) as opposed to ∆Zt−1 in the equations to predict
the elements of Et as is the case for model (A.2) presented in section A.1.3.

We first estimate the elements of β by a least squares regression of one element of Yt on the remaining six
elements of Yt and estimating wt as the residual from this regression as recommended by Engle and Granger
(1987). Because, as noted in Engle and Granger (1987), T 1−δ(β̂ − β) converges in probability to zero for
δ > 0, we condition our estimate of the distribution of future GHG emissions on this value β. We then apply
OLS to each of the three equations of (A.9) to compute estimates µ̂, φ̂ and Γ̂.

We then compute
η̂t = ∆Zt − ν̂ − Π̂Zt−1 (A.10)

for t =1976 to 2010 and
ε̂t = ∆Et − µ̂− φ̂wt−1 − Γ̂∆Zt (A.11)

for t =1991 to 2010.
Next we construct 1,000 realizations of the future sample path of Yt and Zt for t =2011, 2012,..., 2020

given ZT , ZT−1, and YT using the following procedure. Because of the longer time series available to estimate
the parameters of (A.8), we do not account for the estimation error in the parameters of (A.8) in estimating
the distribution of Zt for 2011 to 2020. Our estimates of the uncertainty in future values of the elements of
Zt only depend on our uncertainty about future values of ηt.

We then follow the smoothed bootstrap procedure described in section A.1.3 applied to (A.9) to estimate
the distribution Et for 2013 to 2020 conditional on the actual values of Zt in 2009 and 2010 and simulated
values of Zt for 2011 to 2020. This procedure accounts for estimation error in µ, φ, and Γ as well as the
uncertainty in future values of εt in (A.9). Each of the 1,000 realizations of the future sample paths of ∆Zt
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are fed into the simulation of each of the 1,000 future sample paths of ∆Et, which yields 1,000 realizations
of the future sample path of Yt from 2011 to 2020. We apply the transformations described earlier to the
simulated values of Yt from 2013 to 2020 to produce our estimates of the distribution of future GHG emissions
by each covered sector for this time period.

Table A.8 presents the maximum likelihood estimates of the parameters of (A.8). Table A.9 presents the

OLS estimates of the parameters of cointegrating regression β̂. Table A.10 presents the OLS estimates of
the parameters of (A.9). The second panel of Table A.6 presents multivariate portmanteau statistics for the
residuals from estimating (A.9). For all values of S, a size 0.05 test of the null hypothesis that εt from (A.9)
is white noise cannot be rejected.

Table A.7: Cointegration Rank Test Using Trace (Data from 1975 to 2010)

H0: H1: Eigenvalue LR(r) 5% Critical Value
Rank=r Rank > r

0 0 0.7061 63.3803 47.8564
1 1 0.2905 20.5214 29.7976
2 2 0.1845 8.5080 15.4948
3 3 0.0384 1.3688 3.8415

Note: The Johansen cointegration test of (ln twh p hydro, ln vmt, ln real gas price, ln real gsp) from 1975 to 2010 shows

that it is of rank 1.

Table A.8: Cointegrated Vector Autoregression Parameter Estimates for Zt from 1975 to 2010)

Equation Parameter Estimate Standard Variable
Error

∆ln twh p hydro ν1 6.6052 1.3873 1
Π11 -0.4985 0.1050 ln twh p hydro(t−1)

Π12 -0.4243 0.0894 ln vmt(t−1)

Π13 -0.3870 0.0815 ln real gas price(t−1)

Π14 0.6244 0.1316 ln real gsp(t−1)

∆ln vmt ν2 1.137 0.3039 1
Π21 -0.0842 0.0230 ln twh p hydro(t−1)

Π22 -0.0716 0.0196 ln vmt(t−1)

Π23 -0.0653 0.0179 ln real gas price(t−1)

Π24 0.1054 0.0288 ln real gsp(t−1)

∆ln real gas price ν3 1.1672 1.4108 1
Π31 -0.0879 0.1068 ln twh p hydro(t−1)

Π32 -0.0748 0.0909 ln vmt(t−1)

Π33 -0.0682 0.0829 ln real gas price(t−1)

Π34 0.1101 0.1338 ln real gsp(t−1)

∆ln real gsp ν4 1.7665 0.3104 1
Π41 -0.1317 0.0235 ln twh p hydro(t−1)

Π42 -0.1121 0.0200 ln vmt(t−1)

Π43 -0.1022 0.0182 ln real gas price(t−1)

Π44 0.1649 0.0294 ln real gsp(t−1)

Note: Rank 1 error correction vector autoregression estimates of (ln twh p hydro, ln vmt, ln real gas price, ln real gsp)
from 1975 to 2010.
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Table A.9: OLS Estimates of Parameters of Cointegrating Vector (Data from 1990 to 2010)

Equation Parameter Estimate Variable
ln ngother industrial β0 11.947 1

β1 -0.0748 ln thermal intensity
β2 0.2844 ln transport intensity
β3 -0.0424 ln twh p hydro
β4 -1.0858 ln vmt
β5 -0.1974 ln real gas price
β6 0.6085 ln real gsp

Table A.10: Error Correction Model Parameter Estimates (Data from 1990 to 2010)

Equation Parameter Estimate Standard Variable
Error

∆ln ngother industrial µ1 -0.0110 0.0045 1
Γ11 -0.0196 0.0406 ∆ln twh p hydro(t)
Γ12 -0.3230 0.2707 ∆ln vmt(t)
Γ13 -0.0859 0.0333 ∆ln real gas price(t)
Γ14 0.5274 0.1209 ∆ln real gsp(t)
φ1 -0.9792 0.1507 w(t−1)

∆ln thermal intensity µ2 -0.0081 0.0137 1
Γ21 -0.2327 0.1244 ∆ln twh p hydro(t)
Γ22 0.4686 0.8288 ∆ln vmt(t)
Γ23 0.0149 0.1020 ∆ln real gas price(t)
Γ24 -0.4616 0.3701 ∆ln real gsp(t)
φ2 0.1855 0.4613 w(t−1)

∆ln transport intensity µ3 -0.0146 0.0051 1
Γ31 0.0275 0.0464 ∆ln twh p hydro(t)
Γ32 0.3359 0.3095 ∆ln vmt(t)
Γ33 0.0127 0.0381 ∆ln real gas price(t)
Γ34 0.2787 0.1382 ∆ln real gsp(t)
φ3 0.3826 0.1723 w(t−1)

Note: Vector autoregression estimates of (ln ngother industrial, ln thermal intensity, ln transport intensity) from 1990
to 2010 with w(t−1), the residual from cointegrating regression, and ∆Zt as regressors.

A.1.6.2 Bivariate Model

Our second alternative approach to simulating the distribution of future GHG emissions employs a cointe-
grated bivariate vector autoregression for broad scope and narrow scope GHG emissions from 1990 to 2010.
This model assumes that each element of the vector

Dt = (logarithm of broad scope emissionst, logarithm of narrow scope emissionst)
′

are difference stationary and follow a cointegrated bivariate vector autoregressive process. Table A.11
presents the results of Johansen’s test for the cointegrating rank applied to this bivariate time series. These
testing results are consistent with a rank 1 process. Table A.12 presents the results of applying Johansen’s
maximum likelihood procedure to the model:

∆Dt = µ+ ΛDt−1 + Γ∆Dt−1 + εt (A.10)

The third panel of Table A.6 presents the multivariate portmanteau statistics for the residuals from (A.10).
For all values of S, a size 0.05 test of the null hypothesis that εt from (A.10) is white noise cannot be rejected.

We then follow our two-step smoothed bootstrap procedure to construct 1,000 simulations of the future
time path of broad scope and narrow scope emissions that accounts for both estimation error in µ, Λ and Γ
and uncertainty in the future values of εt in (A.10).
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Table A.11: Cointegration Rank Test Using Trace (Data from 1990 to 2010)

H0: H1: Eigenvalue LR(r) 5% Critical Value
Rank=r Rank > r

0 0 0.5170 17.8414 15.4948
1 1 0.1515 3.2868 3.8415

Note: The Johansen cointegration test of (ln narrowscope emissions, ln broadscope emissions) from 1990 to 2010 with

lag 0.

Table A.12: Bivariate Model Parameter Estimates (Data from 1990 to 2010)

Equation Parameter Estimate Standard Variable
Error

∆ln broadscope emissions µ1 -2.768 0.51791 1
Λ11 1.0071 0.18821 ln broadscope emissions(t)
Λ12 -0.60412 0.1129 ln narrowscope emissions(t)
Γ11 -0.98467 0.29891 ∆ln broadscope emissions(t−1)

Γ12 0.25179 0.1075 ∆ln narrowscope emissions(t−1)

∆ln narrowscope emissions µ2 -7.27 1.1675 1
Λ21 2.6434 0.42427 ln broadscope emissions(t)
Λ22 -1.5857 0.25451 ln narrowscope emissions(t)
Γ21 -2.2024 0.67383 ∆ln broadscope emissions(t−1)

Γ22 0.66588 0.24232 ∆ln narrowscope emissions(t−1)

A.1.6.3 Sampling with Replacement

These econometric model-based approaches to simulating the distribution of BAU GHG emissions may
be seen by some as imposing excessive structure on such a short time series of data.11 To examine the
robustness of this approach, our third alternative approach is a bare bones bootstrap GHG forecast method
that draws narrow scope and broad scope GHG emissions growth rates for each year from the distribution of
these emissions growth rates over the sample period 1990-2010. We created 1,000 bootstrap GHG emissions
paths, all starting at the observed 2010 value and then for each successive year drew with replacement from
the 20 annual growth rates through 2010.12 This approach is equivalent to assuming a bivariate random
walk with drift for the logarithm of emissions as given in (A.10) with the value of the two-dimensional vector
µ set equal to the sample mean growth rate of narrow scope and broad scope GHG emissions, respectively.
We then constructed a total 2013-2020 covered emissions simulation for each of the 1000 simulations by
summing the resulting narrow scope emissions for 2013 and 2014 with the resulting broad scope emissions
for 2015-2020. This approach is likely to understate the uncertainty in the distribution of future emissions
both because it ignores any serial correlation in growth rates and because it fails to account for the estimation
error in µ. That is, it ignores the second source of uncertainty discussed at the beginning of this section –
uncertainty in the true values of the parameters of distribution of BAU GHG emissions – but given that it
assumes the parameters of the distribution are known, it does account for uncertainty in the future values
of the unobservables driving the data generation process.

11There is also a broader concern that this is a very short time series on which to forecast up to a decade of future emissions.
We agree wholeheartedly, but the fact is that such data are representative of the information on which policy makers must
make decisions on GHG emissions caps.

12Each draw was a pair (narrow scope growth, broad scope growth) with the two components taken from the same year so
there is consistency between the two series.
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A.1.6.4 Results of Alternative Methods for Forecast of BAU GHG Distribution

Means of the estimated distributions of annual broad scope emissions from 2013 to 2020 for each of the four
modeling approaches are shown below Figure A.1. The dotted lines are the pointwise 95 percent upper and
lower confidence bands on the future values of annual broad scope emissions.

There is substantial agreement across the four approaches in the estimated means of the distribution of
annual broad scope emissions. The four approaches differ somewhat in the size of the pointwise 95 percent
confidence intervals. The resampling model has the smallest confidence intervals, likely due to the fact that it
does not account for uncertainty in the parameters of the true data generating process. The two-sample error
correction model has the largest confidence intervals, likely due to the fact this model involves estimating the
largest number of parameters and the contribution of uncertainty in value of these parameters is sufficiently
large to relative to the uncertainty in the values of the parameters of the other three more parsimonious
models.
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Figure A.1: Forecast Results – Annual Broad Scope Emissions

19



A.2 Abatement Supply

This section describes the component pieces of the abatement supply function. Abatement derives both
from complementary and other policies that produce emissions reductions independent of the allowance
price (“Price Non-Responsive Abatement”) and from abatement undertaken in response to changes in the
allowance price (“Price-Responsive Abatement”). The emissions reductions resulting from these sources are
summarized in Table 4 in the main text. Here we describe the assumptions behind each source of abatement.

Much of California’s greenhouse gas policy was in flux during 2010-2012, making it difficult to identify
exactly when aspects of the complementary policies became “expected” regulations. Rather than attempting
to parse exact dates or believed probabilities, we assume that the major programs set in law by 2013 – the
Corporate Average Fuel Economy Standard (CAFE), energy efficiency (EE), the Low Carbon Fuel Standard
(LCFS) and the 33 percent Renewables Portfolio Standard (RPS) – were anticipated at the time for which
we simulate distributions of outcomes. While ARB forecasted GHG reductions from these complementary
policies, it is unclear, especially in the out years, how ARB’s baseline GHG emissions forecast, from which
they estimated GHG reductions, compares to the simulations we obtain from the VAR. Thus, rather than
incorporating potentially biased estimates of GHG reductions, we apply a range of adjustments to the
quantity of renewable electricity generation and the emissions intensity of VMT, which approximate the
range of likely impacts of these complementary policies.

As discussed at the beginning of section V of the text, we assume that abatement effects are drawn
independently from BAU emissions, but there is a mechanical correlation that results from the fact that
abatement in transportation and electricity generation manifests as reduced emissions intensity of these
activities. We have also experimented with imposing positive correlation among the abatement paths, but
these have very small impact on the probability of an interior solution. Even a correlation of 0.5 among all
of the abatement paths changes the probability of an interior solution by less than 0.5 percentage points.

As is clear from the discussion below, there is significant uncertainty about the impact of the price
non-responsive abatement pathways. It is important to note, however, that these uncertainties affect the
distribution of emissions apart from the cap-and-trade program, but do not affect the range of abatement
available from the cap-and-trade program. As a result, while any bias in our range of possible impacts
from the price non-responsive abatement pathways would shift the distribution of emissions, it would not
substantially change the abatement that cap-and-trade could deliver. Thus, it would not impact the slope
of the abatement supply curve.

For most policies described below, we assume that abatement will fall within a specific range between a
more effective abatement case and a less effective abatement case. We then sample from a symmetric β(2, 2)
distribution to create a random draw of abatement for each policy from within our assumed range.

A.2.1 Price Non-Responsive Abatement

This section discusses in more detail the sources of price non-responsive abatement (complementary policies
and other exogenous drivers) for which we adjust the VAR output to arrive at estimated distributions of
emissions quantities and prices. Policies producing price non-responsive abatement include policies target-
ing both in-state and imported electricity generation, automotive fuel-economy standards, low-carbon fuel
standards, and emissions offsets.

A.2.1.1 In-State Electric Generation

The VAR estimation and simulation procedure described in the text and above produces a draw from the
distribution of in-state electricity generation in TWh. We adjust in-state generation to account for two
types of zero-carbon electricity generation: renewables and nuclear power. We subtract the assumed energy
produced from these zero-carbon sources from the specific realization of in-state electricity generation before
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Table A.13: Drivers of Price Non-responsive Abatement

Zero-Carbon Power Transport Intensity
Year BAU RPS 33% RPS Nuclear BAU Raw

GWh GWh GWh Forecast EMFAC

2013 34300 39463 17342 0.487 0.470
2014 34300 44625 17342 0.485 0.461
2015 34300 49788 17342 0.483 0.450
2016 34300 54950 17342 0.481 0.433
2017 34300 60113 17342 0.479 0.416
2018 34300 65275 17342 0.478 0.399
2019 34300 70438 17342 0.475 0.383
2020 34300 75600 17342 0.473 0.366

multiplying the remainder by the estimated GHG emissions intensity of thermal generation to calculate
GHG emissions from in-state electric generation. Our BAU scenario assumes renewables generation meets
the 20 percent RPS standard that was in place well in advance of the cap-and-trade program. Specific
values come from the Statewide Annual Planning Renewable Net Short (RNS) update,13 which is produced
by the California Energy Commission. The 2011 RNS update provides a forecast of the amount of in-state
renewable generation that would be needed to comply with the state’s pre-existing 20 percent Renewable
Portfolio Standard (RPS) commitment, including adjustments for exempted sales, energy efficiency, and
imported renewable energy. The assumed BAU nuclear generation incorporates the closing of the San-
Onofre Nuclear Generating Station (SONGS).14 We assume that Diablo Canyon (the only remaining nuclear
generation station in California) generates electricity equivalent to its 2001-2010 average, which we calculate
from EIA data. The nuclear generation and renewable energy necessary to comply with the 20 percent RPS
is considered part of our BAU emissions calculation. The exact output assumed for these sources is presented
in Table A.13.

A.2.1.2 Zero-Carbon Electricity Generation and Energy Efficiency

In April 2011 California adopted a 33 percent RPS.15 We consider this more stringent target to be a comple-
mentary policy providing abatement beyond BAU. The state now seems very likely to exceed the 33 percent
level by 2020, but we do not make further adjustments as it was not clear in 2012 how difficult attaining the
2020 standard would be. The 2011 RPS update (described above) forecasts that an additional 41.3 TWh
of in-state renewable generation would be needed to comply with the 33 percent RPS. We assume that the
State will meet the 33 percent RPS target by incrementally increasing renewables by an equal quantity each
year during the 2013-2020 time period. To account for uncertainty in load growth and other factors that
could contribute to the State exceeding or failing to meet this target, we draw random scaling factors from a
β(2, 2) distribution with a lower bound of 0.9 and an upper bound of 1.1, which we multiply by cumulative

13See http://www.energy.ca.gov/2011publications/CEC-200-2011-001/CEC-200-2011-001-SF.pdf
14For three decades prior to the opening of California’s cap-and-trade program, nuclear power was the largest contributor of

zero-emissions electricity generation, coming from Diablo Canyon Nuclear Power Plant and SONGS. In January 2012, SONGS
was shut down due to faulty upgrades that had been made in 2009 and 2010, and there was widespread speculation about
when and whether it would reopen. In June 2013, Southern California Edison announced that the SONGS closure would be
permanent. Even though the official announcement came in June 2013, this outcome was known to be the most likely outcome
by mid-2012. For that reason, we assume it was known for the purposes of our analysis.

15In 2015, California adopted a new target of 50 percent by 2030, but this did not change the target for 2020.
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expected GHG abatement. More formally, realization-specific abatement from the 33 percent RPS in year
T + k can be expressed as:

Abatementm,T+k = βm(RPS TWhT+k · EIm,T+k),

where βm is the random draw from the β(2, 2) distribution (which is applied in each of the eight years)
associated with simulation draw m, RPS TWh is the value of (additional to BAU) renewable TWh in year
T+k and EIm,T+k is the realization of emissions intensity for thermal generation in California for simulation
draw m.

We make no further adjustments to the VAR forecast to account for increased energy efficiency (EE).
Reflecting California’s longstanding commitment to energy efficiency, there is a strong pre-existing trend
of efficiency improvements already present in the time-series data we used to simulate the BAU emissions.
Total emissions per unit of GSP declined at an average rate of about 1.8 percent per year from 1990 to 2012.
We are therefore concerned that further reductions from our forecast to account for EE improvements would
double count the reductions that are already part of the forecast. Indeed, emissions per unit of GSP decline
under our BAU forecast by about 1.74 percent per year from 2013 to 2020. We therefore make no further
adjustments in addition to EE effects already integrated into our BAU forecasts.

A.2.1.3 Transportation

We incorporate the impacts of these complementary policies by calibrating model-year-specific VMT emis-
sions intensities (essentially miles per gallon) and emissions factors for transportation fuel over the period
2013-2020, using EMFAC (2011), ARB’s tool for forecasting fleet composition and activity in the transporta-
tion sector.16 EMFAC estimates VMT and GHG emissions intensity for each on-road vehicle-class by model
year and calendar year. Thus, the advantage of explicitly modeling on-road vehicle fleet composition and
activity is that we can more precisely simulate the impact of complementary policies that are designed to
directly target specific segments of the vehicle fleet.

To account for CAFE, a policy that proposes to drive the average emissions intensity of new light-duty cars
and trucks from 26.5 miles per gallon (MPG) in 2011 to 54.5 MPG in 2020, we force the EMFAC forecasts of
emissions factors for new light-duty vehicles in model-years 2013-2020 to match the fuel-economy standards
established by CAFE. We then calculate fleet-wide annual emissions factors for calendar years 2013-2020,
by taking the VMT-weighted sum over the set of all model-year by vehicle-class emissions factors.

We model the implementation of the LCFS as a linear decline in EMFAC’s GHG emission factors for
on-road gasoline and diesel.17 In recognition of the ethanol blend wall, we fix the share of biofuel in gasoline
at 11 percent from 2013 through 2020. For diesel, the share of preexisting biofuels is quite small, so we model
the penetration of biodiesel as beginning at 2 percent in 2013 and increasing linearly to 10 percent in 2020.

In order to reflect the underlying random aspects of vehicle emissions, even with successfully implemented
complementary policies, we model the effect of these policies by taking random draws from a β(2, 2) distri-
bution, where the adjusted EMFAC emissions intensity of VMT is the lower bound and the average VMT
emissions intensity from our VAR estimates is the upper bound. Abatement is the product of the specific
realization of VMT from the VAR and the difference between the specific realization of VMT emissions

16EMFAC is an engineering-based model that can be used to estimate emissions factors for on-road vehicles operating
and projected to be operating in California for calendar years 1990-2035. The model uses historical data on fleet composition,
emissions factors, VMT, and turnover to forecast future motor vehicle emissions. Emissions are calculated for forty-two different
vehicle classes composed of passenger cars, various types of trucks and buses, motorcycles, and motor homes.

17This approach stems from an important difference between the cap-and-trade program and EMFAC methods of accounting
for GHG emissions from biofuels. While the cap-and-trade program does not assign a compliance obligation to emissions
from ethanol or biodiesel, EMFAC includes combustion emissions from fossil and bio-fuels in its measures of GHG emissions.
Therefore, our adjustment of the emissions intensity of gasoline and diesel must take into account not only the incremental
contribution of the LCFS, but also the pre-existing levels of biofuels in California transportation fuel.
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intensity from the VAR and a random draw from the β(2, 2) distribution, bounded below by zero.18 More
formally, realization-specific abatement from transport sector complementary policies can be expressed as:

Abatementm,T+k = VMTm,T+k ·max{0, (EIm,T+k − βT+k)},

where VMTm,T+k and EIm,T+k are VMT and emissions intensity from simulation draw m of the VAR during
year T + k, respectively, and βT+k is the transport emissions intensity drawn from the β(2, 2) distribution
in year T + k. The row labeled ‘Transportation’ in the lower panel of Table 4 summarizes the distribution
of resulting abatement from these standards as well as from the Low Carbon Fuel Standard.

A.2.1.4 Energy Price Changes Exogenous to Cap-and-Trade

In addition to the direct effects of regulation, the cost of implementing these complementary policies and
other exogenous (to cap-and-trade) factors will likely cause electricity and transportation fuel prices to rise
for all customers over the years of our forecast, which will reduce consumption.

To account for the impact of exogenous (to cap-and-trade) drivers on the quantity of electricity demanded
we take an average statewide retail electricity price of $135.3/MWh in 2012,19 and assume that this price
will increase by 2.15 percent (real) per year.20 We incorporate uncertainty by drawing a random elasticity
estimate from a β(2, 2) distribution. For the analysis with complementary policies, we assume an elasticity
of -0.1 to -0.2, which combined with a marginal CO2e intensity of 0.428 MT/MWh, yields a reduction of 6.4
to 12.8 MMT over the life of the program. For the analysis without complementary policies, we assume a
-0.3 to -0.5 elasticity range, which yields the reduction of 19.1 to 31.5 MMT.21 The row labeled ‘Exogenous
Electricity Price Effects’ in Table 4 summarizes the distribution of abatement under these assumptions.

Another exogenous driver of higher transportation fuel prices is the LCFS, which could end up signifi-
cantly raising gasoline prices. Discussions with market participants and regulators suggest that the impact
is likely to be capped at $0.20 per gallon, and could be much smaller if regulations are relaxed. Reflecting
that this price change is the greatest source of uncertainty, we estimate abatement by drawing random a
price impact from a β(2, 2) distribution with a lower bound of $0.00 and an upper bound of $0.20, apply-
ing an elasticity of -0.2 throughout.22 The effects of LCFS price impacts are combined with those of the
fuel-economy standards and reported in Table 4.

A.2.1.5 Emissions Offsets

Offsets were expected to be a relatively low-cost (although not free23) means for a covered entity to meet a
portion of its compliance obligation.24 As of the start of the program, ARB had approved four categories of

18We impose a zero lower bound on abatement to account for instances when the specific VAR realization of VMT emissions
intensity is below the β(2, 2) random draw of VMT emissions intensity. Failing to include this lower bound would result in some
instances of negative abatement, which seem implausible because the complementary policies are both minimum standards.

19See 2012 EIA Electric Power Annual, Table 2.10
20This increase is based on a projected real increase for some California utilities from $144/MWh in 2012 to $211/MWh in

2030, an average increase of 2.15 percent per year. See Energy & Environmental Economics (2014).
21Ito (2014) estimates a medium-long run price elasticity for residential electricity demand of -0.09, suggesting that a lower

elasticity might be more relevant under the no complementary policies case when we assume 100 percent pass-through to all
types of customers.

22While some estimates of the elasticity of demand for transportation fuels are somewhat higher than this, these estimates
generally include changes in vehicle choice behavior. Abatement from such changes in fleet composition is already reflected in
the auto fuel economy adjustments discussed above.

23Most estimates of the price at which offsets would be available put their cost at below or just above the auction reserve
price (ARP). We assume that the offsets utilized are available below the ARP. In reality, studies suggest that some may require
a price slightly above the ARP, but still likely below $20/MT. We group these with the abatement available at or slightly above
the ARP.

24http://www.arb.ca.gov/regact/2010/capandtrade10/capv3appf.pdf.
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compliance offset projects that could be used to generate offsets: U.S. Forest Projects; Livestock Projects;
Ozone Depleting Substances Projects; and Urban Forest Projects. Additionally, ARB has authorized the
use of approximately 5.3 MMT of offsets that were listed under a voluntary early action offset program.
However, the total number of offsets expected to be available in the cap-and-trade program is subject to a
high degree of uncertainty and best guesses put the estimate substantially below the potential number of
offsets that could be used (i.e., 8 percent of compliance obligations). One third-party study from September
2012 estimates the number of offsets available under the four original protocols between 2013 and 2020 at
66 MMT, only 30 percent of the 218 MMT of offsets that theoretically could be used to satisfy compliance
obligations.25 ARB subsequently added additional offset protocols, such as rice cultivation and mine methane
capture and destruction. It was estimated that the addition of these two protocols would more than double
the number of offsets available between 2013 and 2020.26 To account for the high degree of uncertainty in
offset availability, we model offset use as random draw from a β(2, 2) distribution with a lower bound of 66
MMT and an upper bound of 130 MMT.27

A.2.1.6 Imported Electricity and Reshuffling

As discussed in the main text, California’s cap-and-trade program attempts to include all emissions from
out-of-state fossil-fuel electricity generation delivered to and consumed in the California. However, because
it is not possible to physically track the source of electricity supplied to California consumers, importers
are instead required to self-report emissions associated with the generation of imported electricity. Electric-
ity importers therefore have an incentive to engage in a variety of practices that lower the reported GHG
emissions content of their imports, a class of behaviors broadly labeled reshuffling. While reshuffling would
not yield aggregate emissions reductions in the Western Interconnection, it could be a major source of mea-
sured emissions reductions under the California cap-and-trade program. ARB has tried to limit reshuffling,
focusing on avoiding reshuffling of imports from coal plants partially owned by California utilities.

According to the CEC Energy Almanac, over the last two decades there have been approximately 95
TWh of net electricity imported into California each year, on average. Supposing imported electricity
remains at this level through 2020, this implies 760 TWh will be imported from 2013 to 2020. Before the
market opened, electric utilities reported to the CEC that they planned to procure 109 TWh of imported
electricity under long-term contracts with coal-fired power plants over the 8-year period. To account for
ARB’s focus on avoiding reshuffling of imports from coal-fired power plants, we hold this quantity fixed at
forecasted levels and consider a range of emission intensities for the remaining 651 TWh of imports. We
consider a high-intensity case where the remaining imports report an average emissions intensity of 0.284
MT/MWh, two-thirds of the California cap-and-trade market’s administratively set default emissions rate
applied to any imports that do not claim a specific generation source for the power, and a low-intensity
case where the remaining imports report an average emissions intensity of 0.142 MT/MWh, one-third of the
default emissions rate. We incorporate uncertainty by drawing a random intensity estimate from a β(2, 2)
distribution bounded by our high- and low-intensity cases.

To calculate emissions reductions from imports we multiply 651 TWh – the quantity of imports net of
coal – by the difference between 0.326 MT/MWh – the emissions intensity implied by our BAU estimate of
emissions from imports – and a random draw from our β(2, 2) distribution.28 More formally, realization-

25http://americancarbonregistry.org/acr-compliance-offset-supply-forecast-for-the-ca-cap-and-trade-program.
26Ibid.
27We assume a single 8-year compliance time horizon. As a result, the analysis does not address the fact that current rules

do not allow a shortfall of offsets in an earlier compliance periods to be recaptured in later time periods, and thus results in
a permanent shortfall in offsets from the theoretical potential. It seems quite likely that this rule would be adjusted if the
allowance price increased and the limit on offsets were constraining.

28Our BAU assumes annual emissions from imported electricity will be 40.17 MMT. Subtracting 13.63 MMT for specified
imports from coal-fired plants, and supposing 81.37 TWh of annual imports from other sources (i.e., total net imports less
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Table A.14: Electricity Import Emissions Calculation

Electricity Import Emissions Abatement from Baseline
Year Baseline Coal Non-Coal (low) Non-Coal (high) Low High

MMT MMT MMT MMT Forecast Forecast

2013 40.17 18.42 11.14 22.29 10.61 0.00
2014 40.17 18.20 11.17 22.34 10.80 0.00
2015 40.17 14.62 11.64 23.28 13.91 2.27
2016 40.17 14.62 11.64 23.28 13.91 2.27
2017 40.17 14.62 11.64 23.28 13.91 2.27
2018 40.17 12.96 11.86 23.71 15.35 3.49
2019 40.17 12.96 11.86 23.71 15.35 3.49
2020 40.17 12.96 11.86 23.71 15.35 3.49
Total 321.36 119.37 92.80 185.61 109.19 16.38

specific abatement from reshuffling can be expressed as:

Abatementm,T+k = 81.37 · (0.326− βm).

To summarize the results of this calculation, we consider reductions from an 8-year BAU of 321 MMT.
Under the high-emissions scenario, emissions from electricity imports would be 305, producing an 8-year
reduction of 16. Under the low-emissions scenario, emissions would be 212, yielding an 8-year reduction
of 109 MMT. Annual emissions from electricity imports under these assumptions are summarized in Table
A.14.

A.2.2 Price-Responsive Abatement

In order to assess the impact of the change in the allowance price on the quantity demanded in the allowance
market, we first analyze price-elastic demand for emissions allowances in four areas on the consumer side:
demand for gasoline, diesel, electricity, and natural gas. For each of these areas, we calculate the emissions
reduction that would occur with the price at the ARP, at the price to access the lowest tier of the allowance
price containment reserve (APCR), and at the price to access the highest tier of the APCR.29 We also
consider responses of industrial emissions to allowance prices.

For this analysis, we assume full pass-through of the GHG allowance price to end-use consumers. To
the extent that some pass-through is reduced through other policies, this will overstate the degree of price-
response of GHG emissions abatement. We recognize that output-based free allocation of allowances to some
trade exposed industries will dampen the effect of allowance prices on the final product prices, but even in
these industries, process improvements to lower GHG emissions will still be incentivized by the full price of
the allowance.30

specified coal) the average emission factor for non-coal-fired imports would be 0.326 MT/MWh (about 23 percent below the
default emissions factor).

29Each of these price levels escalates over time in real terms, so we calculate the price-responsive abatement for each year
separately.

30For transportation fuels, we assume full pass-through of the GHG emissions cost of tailpipe emissions, but no pass-through
of GHG cost from refinery emissions to final fuel prices due to output-based free allocation.
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A.2.2.1 Allowance Price Trajectory

The price of allowances at any point in time will reflect a weighted average of the probabilities of different
equilibrium outcomes. So, price will evolve over time as new information becomes available, eventually ending
at the aggregated equilibrium price. A full dynamic model of this process would be a large and complex
undertaking, which we do not attempt here. Instead, for each of the 1000 random draws, we assume a linear
price path from the start of the program to the end of 2020.31 The trajectories are illustrated in Figure A.2.

Figure A.2: Assumed Trajectories of Allowance Prices Conditional on Endpoints

The details of this approximation are as follows: We begin by creating a probability distribution of the
aggregate market equilibrium under the assumption that for each draw the GHG price to which demand will
respond in every year is the 2020 equilibrium price associated with that draw, discounted back to each year at
a 5 percent real discount rate. From this price distribution we create a price for 2013 that is the probability-
weighted average of the (discounted) 2020 possible price outcomes. For each draw, we then assume that the
price to which demand responds follows a linear path from this 2013 price to whatever equilibrium price
results from that draw. This creates a new distribution of probabilities for prices in 2020, which in turn
creates a new discounted price in 2013 that reflects the probability-weighted average of 2020 outcomes. We
then recalculate the linear price paths for each draw. This iterative process converges quickly so that the
price-responsive abatements in response to these price paths create a distribution of 2020 equilibrium prices
that, after discounting, is within $0.01 of the 2013 price that we assume begins the linear price path. This
implies that all price paths to 2020 begin at the same 2013 level, with some increasing to the highest tier of

31And similarly for the analysis of the program extension to 2030, we assume a linear price path from 2018 to 2030. We start
in 2018, because the extension legislation was not passed until July 2017 and the implementation rules for the extension were
still uncertain as of late 2017.
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the APCR,32 others decreasing to the price floor, and others ending at some price in between the floor and
highest APCR tier. Assuming that the price follows such a linear path has a small effect on the mean level of
price-responsive abatement, but substantially reduces the variance of price-responsive abatement compared
to assuming that the price in every year is the (discounted) final year price.

A.2.2.2 Demand for Fuels

The potential impact of the allowance price on the consumption of transportation fuels – gasoline and diesel
– is a function of short-run effects, such as driving less and switching among vehicles a family or company
owns,33 and longer-run effects, such as buying more fuel-efficient vehicles and living in areas that require less
use of vehicles. If, however, fuel-economy standards have pushed up the average fuel-economy of vehicles
above the level consumers would otherwise voluntarily choose given fuel prices, then raising fuel prices will
have a smaller effect, because the fuel-economy regulation has already moved some customers into vehicles
with a fuel economy as great or greater than they would have chosen in response to higher gas prices. For
this reason, in jurisdictions with binding fuel-economy standards, such as California, the price-elasticity of
demand for transportation fuels is likely to be smaller. Similarly, if urban planning policies are undertaken
to reduce auto usage independent of the allowance price, then price-responsive changes to transportation
demand will be muted. Short-run estimates of the price elasticity are generally -0.2 or smaller.34 Long-run
elasticities are generally between -0.3 and -0.5.35 Furthermore, the fuel-economy standards would reduce
the absolute magnitude of emissions reductions in another way: by lowering the base level of emissions
per mile even before the price of allowances has an effect. Recall that we incorporate the direct impact of
fuel-economy standards on emissions, holding constant vehicle miles traveled, when we account for transport
emissions intensities in the VAR simulation.36

We recognize that improved fuel-economy standards will phase in gradually during the cap-and-trade
compliance periods. To balance these factors, we assume that the base level of vehicle emissions is unchanged
from 2012 levels in calculating the price response, and we assume that the price elasticity of demand will
range from -0.1 to -0.2. We assume 100 percent pass-through of allowance prices on tailpipe emissions to the
cost of gasoline. Many studies on pass-through of fuel taxes and crude oil price changes, including Borenstein,
Cameron and Gilbert (1997), Lewis (2011), and Marion and Muehlegger (2011), have found pass-through to
retail price equal or very close to 100 percent.

Using an allowance price trajectory, as described above, reaching the highest price in the price containment
reserve in 2020 which (in 2015 real dollars) is $72.12,37 and assuming a -0.1 price elasticity of demand, yields
a reduction of 6.4 MMT over the life of the program from reduced use of gasoline. For diesel, the same
allowance price trajectory,38 yields a reduction of 1.8 MMT over the life of the program.

Assuming an elasticity of -0.2 about doubles the reduction from transportation fuels to 16.3 MMT.
As part of the later analysis without complementary policies, we also consider the potentially more-elastic
response if vehicle fuel economy standards are not separately increased. Assuming elasticities of -0.3, -0.4,
and -0.5 yields reductions of 24.3 MMT, 32.2 MMT, and 40.1 MMT, respectively. Note that transportation
fuels are under the cap only in 2015-2020, so we calculate reductions for only these six years. When we
examine the market with no complementary policies, we combine the -0.3 to -0.5 elasticity range with the

32Even though there was no firm price ceiling at the time the market was launched, we assume that market participants
believed the price would not be allowed to go higher than the highest step of the APCR.

33See, for instance, Archsmith et. al. (2017).
34See Hughes, Knittel and Sperling (2008). Levin, Lewis and Wolak (2017) suggests that medium run elasticities are more

likely to be in the range of -0.3.
35See Dahl (2012)
36The VAR also accounts for estimates of uncertainty in the change in gasoline prices absent GHG costs.
37This translates to an increase of about $0.57 per gallon of gasoline at the pump in 2015 dollars (after accounting for 10

percent biofuels).
38This trajectory translates to an increase of about $0.73 per gallon of diesel at the pump in 2015 dollars.
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BAU transport emissions intensity described in the previous section, essentially assuming this higher price
elasticity if higher fuel-economy standards had not been effectively implemented.

In the primary scenario with complementary policies, we also consider the potential impact of the LCFS
on gasoline prices and gasoline quantity consumed, as discussed above.

A.2.2.3 Demand for Electricity

In California, the impact of a rising allowance price on emissions from electricity consumption depends
primarily on the pass-through of allowance costs to retail prices of electricity, because a rising GHG price
has relatively little impact of the ordering of marginal production costs among in-state fossil fuel generation.39

The three large regulated investor-owned utilities (IOUs) that serve about 85 percent of load in California
receive free allocations of allowances that they must then sell in the allowance auctions, resulting in revenues
to the utilities. Those revenues must then be distributed to customers. They could be used to reduce the
retail rate increases that would otherwise occur due to higher wholesale electricity purchase prices caused
by generators’ allowance obligations for their GHG emissions, but some share were to be distributed to
residential customers lump sum. Publicly-owned utilities that serve the remainder of demand were not
obligated to sell their allowances, and were free to decide how much of the value of the free allowances to
use to offset retail rate increases that would result from higher wholesale electricity prices.

Based on a resolution from the CPUC in December 2012,40 a best guess at the outset of the program
seemed to be that the revenues from utility sales of allowances would be used first to assure that the
cap-and-trade program causes no price increase to residential consumers. In addition, the revenues would
be allocated to dampen price increases for small commercial customers and likely greatly reduce them for
energy-intensive trade-exposed large industrial and commercial customers. Remaining revenues would be
distributed to residential customers through a semi-annual lump-sum per-customer credit.

It appears that most electricity sold to commercial and industrial customers would see more than 100
percent pass-through of energy price increases due to allowance costs.41 Borenstein et al (2016) discusses
the possible interpretations of the CPUC decision and how it would allocate a disproportionate share of the
wholesale cost increase from cap-and-trade to industrial and commercial customers and protect residential
customers from rate increases. For the purpose of our analysis, however, imposing a more-than-100 percent
pass-through on a subset of customers to cover the remaining (residential) customers who see no increase has
nearly the same effect on total consumption as assuming 100 percent pass-through to all customers.42 So, for
simplicity, we simply assume 100 percent pass-through of increased electricity costs to all retail customers.

With a statewide average GHG intensity of 0.326 metric tonnes (MT) per MWh (based on the 2012
GHG inventory), this means that the cost of electricity generation per MWh would increase by 0.326 times
the allowance price. At an allowance price of $50/MT, this raises average rates by $16.30/MWh and at
$70.36/MT by $22.94/MWh.43 We apply these increases to the state average retail rates of all customer

39Bushnell, Chen, and Zaragoza-Watkins (2014).
40http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M040/K841/40841421.PDF. The full decision is at

http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M039/K594/39594673.PDF.
41It is worth noting that it is far from straightforward once the program begins for a regulator to know what the counterfactual

price of electricity would have been if allowances had sold for a different price or for a price of zero. The price of allowances has
a complex impact of wholesale electricity expenditures depending on the emissions intensity of the marginal supplier versus the
average supplier and the competitiveness of the wholesale electricity market. Thus, it is not clear how the CPUC would make
good on a promise not to pass-through the cost of allowances without a detailed study of the impact that cost on equilibrium
wholesale electricity prices.

42This would not be the case if residential customer demand were clearly more or less elastic than demand from commercial
and industrial customers. There is not, however, consistent evidence in either direction.

43The 0.326 MT/MWh figure is arrived at by taking total 2012 GHG electricity emissions measured for in-state (44.9 MMT)
and for imports (39.8 MMT) and dividing by total consumption (259.5 MMWh). This assumes that the wholesale price
obligation is increased by the cost of the allowances, when it could be more or less depending on the GHG intensity of the
marginal versus the average producer and the share of long-term supply contracts with prices set prior to or independent of the
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classes, based on EIA data, to get a weighted average percentage price response.
The choice of an elasticity for incorporating price-responsive changes in electricity usage due to the

carbon price again confronts the issue of short-run versus long-run decision-making by customers. As with
transportation fuels, other regulations that improve energy efficiency – such as building codes and regulation
of appliance efficiency – are likely to lower the demand response to increased electricity prices. There have
been many studies of residential electricity demand, which suggest a short-run elasticity below -0.2 and
a long-run elasticity mostly in the range of -0.3 to -0.5.44 Commercial and industrial electricity demand
elasticity estimates are few in number and not at all consistent. Kamerschen and Porter (2004) estimates
a long-run industrial price elasticity of demand of -0.35 when controlling for heating and cooling degree-
days. Based on these estimates, we use a range of -0.1 to -0.2 for the price elasticity of demand in the
presence of complementary policies, and -0.3 to -0.5 for longer run elasticity, assuming no damping effect of
complementary policies.

Because the resulting impact on electricity consumption would be a reduction at the margin, we multiply
the demand reduction by an assumed marginal GHG intensity – which we take to be 0.428 MT/MWh – to
calculate the reduction in emissions at different prices.45 The result is a reduction of 7.7 MMT when the
price equilibrates at the auction reserve by the end of the program, 26.9 MMT when price ends at the lowest
step of the APCR, and 32.9 MMT when price is at the highest step of the APCR in 2020.46

A.2.2.4 Demand for Natural Gas

In 2012, it appeared that ARB policy would give free allowances to natural gas distribution companies
(which are nearly all investor-owned regulated utilities in California) equal to their obligation associated
with their 2011 supply to non-covered entities (less than 25,000 MT of CO2e per year), but then declining at
the cap decline factor. The utilities receiving the free allowances would then consign them to the quarterly
auctions and receive revenues. The utility would then be responsible for procuring allowances equal to the
GHG emissions associated with all its sales of natural gas including to the non-covered entities. Importantly,
however, the CPUC had decided that the revenues from the free allowances should be returned to customers
on a non-volumetric basis.47 As a result, the marginal cost of procuring and selling natural gas would rise
by the associated allowance cost for GHGs.48 Thus, we assume 100 percent pass-through of GHG allowance
costs to the volumetric natural gas prices of utilities.

Large industrial natural gas consumers were not as a class allocated free allowances either directly if they
procured their own gas or indirectly to the utility if they purchased through the utility. As discussed in
the text, some industrial customers were allocated free allowances through output-based allocation in order
to reduce leakage. This effectively lowered their marginal cost of producing their output, and reduced the
pass-through of GHG costs to their final goods customers. However, these customers still had an incentive
to reduce natural gas consumption in their production processes. For simplicity, we assume that the output-
based allocation did not materially reduce the price responsiveness of demand for allowances from large
industrial natural gas customers.

impact of GHG costs on the market price.
44See Ito (2014) and Fell et al (2014) for two recent estimates and references to the earlier literature.
450.428 MT/MWh is the default rate assigned to “unspecified” source of electricity under the cap-and-trade program. The

marginal GHG intensity of 0.428 is based roughly on the efficiency of a combined-cycle gas turbine generator. If some of the
reduction comes out of renewable, hydro, or nuclear generation the marginal intensity will be lower. The impact scales linearly
with the assumed marginal GHG intensity.

46The baseline price from which all price increases are calculated is the average price of electricity, assumed constant in real
terms over 2013-2020.

47Since this time, there have been lengthy legal proceedings at the CPUC and protests about the non-volumetric basis for
refunds, but that opinion has prevailed thus far.

48For a history of this policy discussion, see http://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M197/K205/197205891.PDF.
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As explained in the text, in the first compliance period (2013-2014), only large industrial customers
incurred a compliance obligation from natural gas combustion (whether they purchased the gas directly or
through the gas utility). These customers comprised approximately 59 percent of gas demand, so as discussed
above, we calculate abatement in those years assuming only 59 percent is covered. During 2015-2020, all gas
consumption was to be covered by the program, and we calculate the price response of abatement accordingly.

If the cost of natural gas emissions were fully passed through to customers, then it would raise the price
of natural gas by $0.0543 per MMBTU for every dollar per tonne of allowance price. Based on Auffhammer
and Rubin (2018) and Bernstein and Griffin (2006), we assume a demand elasticity of -0.1 to -0.3 for
analysis of price-responsive abatement in the presence of complementary policies, slightly higher than most
of the short-run elasticity estimates. It is worth noting that much of the natural gas combustion (other
than for electricity generation) is used for heating buildings and water and California’s Title 24 imposes
the most aggressive energy efficiency standards in the country for building design, insulation and other
energy use.49 California also has many programs to subsidize energy efficiency upgrades for both residential
and commercial/industrial customers. For the absence of complementary policies (section V.A) – including
building standards – we assume a demand elasticity range of -0.3 to -0.5, reflecting longer-run elasticity
estimates.50 We then draw realized elasticities from a β(2, 2) distribution with this support.

For the first compliance period, when only industrial customers are covered, we use the baseline retail
price of $5.77, EIA’s reported average price of natural gas for industrial customers in 2012, and the 2012
industrial consumption for the baseline quantity. For later years, we use the volume-weighted average retail
price across industrial, commercial, and residential customers and the total consumption from these three
sectors.51

A.2.2.5 Abatement from Out-of-State Electricity Dispatch Changes

To the extent that some high-emitting out-of-state coal plants are not reshuffled or declared at the emissions
default rate, there is possible elasticity from higher allowance prices incenting reduced generation from such
plants. We considered this, but current ARB policy suggests that short-term energy trades would fall under
a safe harbor and would not be considered reshuffling. If that is the case, then an operator would be better
off carrying out such trades than actually reducing output from the plant. This suggests that allowance
price increases might incent some changes in reported emissions. In any case, we consider that as part of
the analysis of price non-responsive abatement discussed above.

A.2.2.6 Industrial Emissions

For the industries covered under output-based updating, there may still be some emissions reductions as the
allowance price rises. This could happen in two ways. First, once a baseline ratio of allowances to output
is established, these firms have an incentive to make process improvements that reduce GHG emissions for
a given quantity of output. It is unclear how much of such improvement is likely to occur. At this point
we have no information on this. Our current estimates assume this is zero. ARB’s analysis of compliance
pathways suggests that at a price of up to $18/tonne (25 percent of the highest price of the APCR in 2020),
the opportunity for industrial process reduction is at most 1-2 MMT per year.52 Second, because the output-
based updating is not 100 percent, additional emissions that result from marginal output increases do impose
some marginal cost on the firms. That impact is likely to be small, however, because the effective updating

49See, for instance, http://www.energy.ca.gov/title24/2008standards/residential manual.html .
50As with the previous energy demands, there are estimates of higher elasticities in the literature, but they generally include

switching to other fossil fuel energy sources.
51See EIA Natural Gas Annual, 2012.
52See figures F-3 through F-9 of Appendix F, “Compliance Pathways Analysis,” available at http://www.-

arb.ca.gov/regact/2010/capandtrade10/capv3appf.pdf.
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Table A.15: Summary of Potential for Price-Responsive Emissions Abatement

Scenarios with Complementary Policies

Price-responsive Range of Energy Price Changes Abatement in program
Allowance Demand Elasticities At Different Levels of Allowance at APCR (MM tons)
Reduction 2013-2030 ($2015): cumulative 2013;2015-2030

Auction APCR
Sector Low High Reserve Low Elas High Elas

Electricity ($/MWh) -0.1 -0.2 $3.58/$5.04 $16.73/$23.54 6.51 12.94
Transportation ($/Gallon) -0.1 -0.2 $0.10/$0.13 $0.47/$0.60 8.20 16.32
Natural Gas ($/MMBTU) -0.1 -0.3 $0.60/$0.84 $2.78/$3.92 16.11 46.76

Scenarios with No Complementary Policies

Price-responsive Range of Energy Price Changes Abatement in program
Allowance Demand Elasticities At Different Levels of Allowance at APCR (MM tons)
Reduction 2013-2030 ($2015): cumulative 2013;2015-2030

Auction APCR
Sector Low High Reserve Low Elas High Elas

Electricity ($/MWh) -0.3 -0.5 $3.58/$5.04 $16.73/$23.54 19.95 32.87
Transportation ($/Gallon) -0.3 -0.5 $0.10/$0.13 $0.47/$0.60 24.84 40.96
Natural Gas ($/MMBTU) -0.3 -0.5 $0.60/$0.84 $2.78/$3.92 47.92 77.29

Notes: All energy price changes assume 100% pass-through.

Range of price changes shown are for first and last year covered by cap and trade program.

Range of price changes for Transportation and are for 2015-2020 only

Range of price changes for Electricity and large users of Nat. Gas for 2013-2020

Range of Transportation price changes based on weighted average of gasoline and diesel

Transportation abatement is for tailpipe emissions only, does not include associated upstream emissions

factors average between 75 percent and 90 percent over the program, which implies that the firm faces an
effective allowance price of 10 percent to 25 percent of the market price for emissions that are associated
with changes in output. At this point, we have not incorporated estimates of this impact, but it seems likely
to be quite small.

A.2.2.7 Summary of Potential for Price-Responsive Abatement

Table A.15 summarizes the potential impact of allowance prices on energy prices and the potential resulting
price-responsive abatement along different trajectories, to the ARP and to the highest tier of the APCR. Even
with the much higher elasticities that we assume when there are no complementary policies, the aggregate
abatement is likely to be small compared to the uncertainty in BAU emissions and other exogenous sources
of abatement.

A.3 Alternative Allowance Price Results

In the text and in section A.1 we describe alternative approaches to modeling BAU emissions and supply of
abatement. In this section we summarize results for these alternative approaches.
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A.3.1 No Complementary Policies

In section III of the main text we summarize how we adjust for several complementary policies that provide
a horizontal shift to the abatement supply curve. These complementary policies also impact the elasticity
of response to allowance prices, rotating the slope of the abatement supply curve, as discussed in subsection
V.A of the main text. When we remove the fuel economy regulations, we assume this increases the price
elasticity of gasoline demand and consequently the elasticity of transportation emissions to the price of
allowances. The logic of this assumption is that customers would choose to purchase more fuel-efficient
vehicles under high gasoline and allowance price outcomes, whereas under the fuel economy standards they
would be required to purchase fuel efficient vehicles under any scenario. Therefore, we increase the elasticity
of demand for diesel and gasoline from a range of -0.1 to -0.2 to a range from -0.3 to -0.5. Similarly, we
assume that the removal of energy efficiency programs and other customer-facing complementary policies
increase the elasticity of demand for natural gas and electricity also increase to -0.3 to -0.5.

Figure A.3 presents the equivalent of Figure 4 from the text under the assumptions of adopted in the
section V.A with no complementary policies. For comparison, Figure A.4 reprints Figure 4 from the text.
Abatement supply is more price elastic under this set of assumptions and the upward sloping portion of
the abatement supply curve – above the ARP, but below the steps of the APCR – now falls in a higher-
probability region of the BAU probability density function. Still, as reported in the text, the probability of
the equilibrium outcome falling in this range is only 6.2 percent.

A.3.2 Alternative BAU Estimates

In subsection A.1.6 we described three alternative approaches for estimating the distribution of future BAU
emissions. In this subsection we present potential implications of those approaches for the distribution of
market equilibria.

In order to get to the market equilibria, however, one needs estimates of the distribution of abatement
supply. Recall that for our primary analysis, estimates of the abatement supply from complementary policies
came in part from the estimation of the seven-variable VAR. In particular, estimates of the GHG reduction
from transportation and in-state thermal electricity generation were derived from the estimated paths of
VMT and GHG intensity of transportation in one case, and in-state thermal electricity generation and the
GHG intensity of that generation in the other case. It is not straightforward to derive similar estimates
from the two-sample error correction model, because of the separate estimation for the two samples, and
the bivariate vector autoregression and sampling from past growth rates with replacement do not yield any
estimates of abatement supply. For this reason, and to present a comparison that is not driven by different
abatement supply estimates, we present results for all four approaches using the abatement supply from
our primary analysis. The difference in the outcomes is driven entirely by differences in estimates of BAU
emissions.

Figure A.5 presents our primary results alongside the results from the three alternative approaches. The
upper left graph replicates our primary results from Figure 4 from the text. The other three graphs show
the equivalent presentation of results from the three alternative approaches. In all cases, the probability of
an interior solution is quite small. In our primary results, it was estimated to be 1.1 percent. Using the
two-sample error correction model, it is estimated to be 2.2 percent, while the estimates are 4 percent with
the cointegrated bivariate vector autoregression, and less than 1 percent using the simplest model of just
sampling growth rates (with replacement) from the 20 years of GHG data.
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Figure A.3: Net Emissions and Abatement Supply with No Complementary Policies (2013-2020)
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Figure A.4: Net Emissions and Abatement Supply with Complementary Policies (2013-2020)//(Reproduces
Figure 4 from text)
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Figure A.5: Net Emissions and Abatement Supply Under Alternative Approaches to BAU Estimation
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