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This paper develops three asymptotically equivalent tests for examining the validity of imposing 
linear inequality restrictions on the parameters of linear econometric models. First we consider the 
model .v = X/3 + e. where r is N(O,8), and the hypothesis test H: R/l 1 r versus K: p E R”. Later 
we generalize this testing framework to the linear simultaneous equations model. We show that the 
Joint asymptotic distribution of these test statistics and the test statistics from the hypothesis test 
H: RP = I versus K: R/3 2 r is a weighted sum of two sets of independent X’-distributions. We 
also derive a useful duality relation between the multivariate inequality constraints test developed 
here and the multivariate one-sided hypothesis test. In small samples, these three test statistics 
satisfy inequalities similar to those derived by Berndt and Savin (1977) for the case of equality 
constraints. The paper also contains an illustrative application of this testing technique. 

1. Introduction 

Estimation under inequality restrictions has a long history in regression 
analysis and its application has become more widespread with the increase in 
sophistication of computer software. Judge and Takayama (1966) introduced 
least squares regression under inequality restrictions and suggested its formu- 
lation as a quadratic programming problem. Liew (1976) discussed the large- 
sample properties of the estimator as well as presented results of a simulation 
study of the small-sample properties of the inequality constrained least squares 
(ICLS) estimator. The increased use of this estimation technique suggests the 
need for a hypothesis testing procedure to examine its validity. 

An inequality constraints testing framework should be useful to applied 
researchers because it provides a statistical test of the validity of a priori 

beliefs about the signs of regression parameters. Very often in empirical 
practice researchers obtain estimated parameter vectors where the signs of 
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several of the elements are incorrect as determined by a priori knowledge or 
economic theory. The usual ad hoc procedure is to delete these variables from 
the estimating equation and re-estimate the model or report the regression as 
is and try to explain these incorrect signs. A multivariate inequality constraints 
test provides a solution to this problem by allowing the researcher to statisti- 
cally test whether or not the signs of the true values of these elements are 
consistent with the researcher’s beliefs. Or in practical terms, whether or not it 
is statistically valid to zero out incorrectly signed estimated coefficients from a 
regression equation. 

Recently, methods for testing the validity of imposing inequality constraints 
have been proposed by econometricians. Yancy. Judge, and Bock (1981) 
discussed tests of the null hypothesis that a subset of the parameter vector lies 
in the positive orthant for the special case that the design matrix in the linear 
regression model y = Xp + E is orthogonal (X’X = I) and the covariance 
matrix of the disturbance vector is scalar (E(EE’) = ~~1). Kodde and Palm 
(1986) devised a generalized distance test for examining the validity of 
multivariate nonlinear inequality constraints on the parameters of general 
econometric models which utilizes a consistent, asymptotically normal esti- 
mate of the parameter vector. Our work, developed independently of theirs, 
links up their generalized distance approach to testing multivariate inequality 
constraints to a likelihood-ratio-based approach. 

For linear econometric models (the linear simultaneous equations model 
being the most general), we devise three asymptotically equivalent linear 
inequality constraints test statistics and derive their exact null asymptotic 
distribution. These statistics resemble the likelihood ratio, Wald, and Lagrange 
multiplier statistics for testing linear equality constraints. The specialization to 

linear inequality constraints and linear econometric models is an important 
distinction because severa! complications arise and the testing framework 
presented here must be modified when nonlinearities in the constraints or 
model are introduced.’ This paper also extends the well-known duality rela- 
tion in equality constraints testing between H: Rfi = r versus K: R/3 f r and 
H: A = 0 versus K: A z 0, where h is the true value of the Lagrange multiplier 
vector associated with constraints R/3 = r. We show that for tests of the same 
size, H: R/3 L r versus K: /I E R K is the same test as H: X = 0 versus K: 
X 2 0. We also contrast the multivariate inequality constraints test considered 
here with the hypothesis test, H: R/3 = r versus K: R/3 2 r, considered by 
Gourieroux, Holly, and Monfort (1982). hereafter referred to as GHM. We 
derive the joint distribution of the likelihood ratio test statistics from these two 
testing problems. This joint distribution derivation illustrates the precise 
relationship between these two hypothesis tests and suggests a methodology 
for applying these test statistics to problems involving inequality constraints. 

’ Wolak (1987. 1989) discusses these issues 
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The inequality constraints testing problem has many of its roots in the 
multivariate one-sided hypothesis testing literature of mathematical statistics. 
This literature deals with the hypothesis testing problem, H: p = 0 versus K: 
p 2 0, where p is the mean of a multivariate normal random vector. This 
literature begins with Bartholomew (1959a, b, 1961) who considers a related 
testing problem, H: p1 = p2 = . . . = pK versus K: p1 2 pL2 2 . . . r pK, where 

the p,. j= l,..., K, are means of independent normal random variables. 

Kudo (1963) extends Bartholomew’s results to the specific case considered 
above. Neusch (1966) also treats this same problem. Perlman (1969) general- 
izes these results to testing H: p E P, versus K: p E P2, where P, and P2 are 
positively homogeneous sets with P, c P2. A special case of his framework is 
the hypothesis test H: p E A* versus K: ~1 E R K, where A* is a closed, convex 
cone in RK. Under certain conditions, linear inequality constraints define 

closed, convex cones in R k- Consequently, we use this case of Perlman’s . 
framework as the general result off of which we specialize to develop our 
inequality constraints tests. 

Robertson and Wegman (1978) test order restrictions as a null hypothesis 
within the context of the exponential family of distributions. They consider 
hypothesis tests of the form H: pr 2 pZ 2 . . . 2 pK versus an unrestricted 
alternative. Dykstra and Robertson (1983) extend this testing framework to 
cases where a collection of independent normal means is, in their words, 
decreasing on the average. This allows reversals in the above inequalities over 
short ranges of the EL,, j = 1,. . . , K. The general methodology these re- 
searchers use to calculate the null distribution of their likelihood ratio statistic 
for testing order restrictions can be extended to apply to our problem of 
testing multivariate inequality constraints. 

An outline of the rest of the paper follows. In section 2 we introduce the 
unconstrained, inequality-constrained, and equality-constrained generalized 
least squares estimators of the coefficients of the linear regression model for 
the case that the covariance matrix of the errors is known. Section 3 contains 
the derivation of the Kuhn-Tucker, Wald, and likelihood ratio statistics for 
testing inequality constraints and shows their equivalence when the covariance 
matrix of the disturbance vector of the model is known. Here we show the 
equivalence of the Kodde and Palm (1986) generalized distance statistic, 
specialized to linear models and constraints, to the three likelihood-ratio-based 
statistics. In section 4 we show the joint distribution of the likelihood ratio 
statistics from the GHM testing problem and the multivariate inequality 
constraints testing problem is a weighted sum of two sets of independent 
&i-squared distributions. This section also contains the extension of the 
duality relation in multivariate equality constraints testing to the multivariate 
inequality constraints testing framework. 

In section 5 we show that when the covariance matrix of the disturbances 
depends on a finite number of parameters the test statistics of section 3 are 
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asymptotically equivalent. We also show that the Berndt and Savin (1977) or 
Breusch (1979) inequalities for the Lagrange multiplier, Wald, and likelihood 
ratio tests continue to hold for our three analogous inequality constraints test 
statistics. Following this section is a simple, yet potentially very common, 
application of our test statistics in demand analysis. We test the hypothesis 
that electricity demand is decreasing in price, increasing in income, and 
increasing in the price of natural gas. Here we also suggest a procedure for 
applying the multivariate inequality constraints test and the GHM test to 
problems involving inequality constraints. The final section of the paper 
extends our testing technique to the linear simultaneous equations model. 
Hendry (1976) presents a discussion of all linear models which arise as a 
special case of this model. 

2. The three estimates of j3 

For expositional ease, we first derive our results for the linear model 

Y = xp + E, 

where y is a (T x 1) vector, X a (T x K ) matrix of rank K, and fi is a (K X 1) 
vector. We assume that E is a (T X 1) random vector which is N(0, 2). We 
assume that _Z is a positive definite matrix of known constants. In section 5 we 
relax this assumption to the existence of a consistent estimate of Z. Because 
we assume a general covariance matrix for E, the results presented here apply 
to the univariate linear regression model with a very general form of the 
covariance matrix of the errors (for example, autocorrelation, heteroscedastic- 
ity. and error component models). The results also cover the linear seemingly 
unrelated regressions system and the linear multivariate regression model, 
because both models can be written in this general form [see Theil (1971, pp. 
307-311)]. Linear inequality constraints in linear simultaneous equations 
models is the most general testing problem which can be dealt with by the 
framework discussed here. Section 7 presents the extensions to this framework. 
Wolak (1989) shows that a sufficient condition for the validity of the results of 
this paper is linearity of the model and constraint functions. 

The matrix of constraints, R, is a (P X K) matrix of rank P, where P I K.’ 
The inequality constraints are expressed as R/3 2 Y, where r is a known 
(P X 1) vector. 

“The consideration of the case where P > K adds considerably to the complexity of the 
problem. Kudo and Choi (1975) consider this situation for the multivariate one-sided hypothesis 
test. 
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We now define the three estimates of /3. The ICLS estimator, b, is the 
solution to the quadratic program (QP): 

9” ( y - XB)‘P( y - Xb), 

subject to Rb 2 r. 
(2) 

Gill, Murray, and Wright (1981) provide an excellent survey of the various 
methods to solve this problem. The (P x 1) vector of Kuhn-Tucker multipli- 
ers associated with the constraints Rb 2 r is represented by i. The uncon- 
strained estimator is obtained by generalized least squares as: 6 = 
(X’_Y-‘X))‘X’Z’-‘y. For completeness, we associate with 6 a Kuhn-Tucker 
multiplier i which is identically zero. The equality constrained estimator. 6, is 
the solution to 

rnin(y - Xb)‘E-‘(y - Xb), 

(3) 
subject to Rb = r. 

The Lagrange multiplier vector associated with the equality constraints is x. 
Several relations, which are useful in subsequent sections, exist between the 

three estimates of /3. A derivation by GHM and Liew (1976) implies that each 
of the three estimators satisfies 

b, = 6 + (X’x-‘X) -lR’X,/2, (4 

where n indexes the unconstrained, inequality-constrained, or equality-con- 
strained estimator. This equation for the inequality constrained estimator is 

g-i= (X’Z-‘X)-1R’r;/2. (5) 

Eq. (4) for the equality constrained estimator is 

2(R(X’Ip’X)-1Rtj-1(r- Rh) =i. (6) 

Taking expectations of both sides of (6) gives 

2[R(X’Z-‘X)-‘R’j-‘(r- Rj?) =A, 

which defines h in terms of R. 

(7) 

All of the estimators and their associated Kuhn-Tucker or Lagrange multi- 
pliers will be denoted by the symbols we have defined here throughout the 
entire paper. 
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3. Four equivalent test statistics 

In this section we derive four equivalent tests for the null hypothesis 
R/3 2 r, for the case in which ,Z is known. The likelihood ratio (LR) statistic is 
defined in the usual fashion as 

LR = - 2 log( z/i) = 2(log i - log L), 

where i and 2 are the maximum values of the likelihood function under the 
null hypothesis (R/? 2 r) and maintained hypothesis (/3 E RK). Because Z is 
assumed to be known, 6 and b’ are also the unconstrained and inequality- 
constrained maximum likelihood (ML) estimates of /3. This implies 

The LR statistic is also the optimal value of the objective function from the 
following quadratic program (QP): 

n$n(u-Xb)‘B_‘(y-Xb)-(y-x~)~_r-i(y-X&), 

subject to Rb 2 Y. 

Using the definition of 6, QP (8) becomes 

(8) 

miny’Z_‘X( X’Z-‘X)-lX’E-ly - 2y’Z-‘Xb + b’X’Z_‘Xb, 
h 

(91 
subject to Rb 2 Y. 

This form will prove useful later, but for now it puts QP (8) into the form of 
the standard QP: 

min a + c’x + $x’Qx, 
x 

subject to Fx 2 d. 

The dual of QP (10) is 

my X’( d + FQ-‘c) - $X’FQ-lF’X - +‘Q-‘C + a, 

subject to X 2 0. 
(11) 

Luenberger (1969, ch. 8) and Avriel (1976, ch. 7) discuss the duality theory of 
quadratic programming necessary for our purposes. If we define QP (8) as the 
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primal problem, then its dual is 

my X’( r - Rg ) - X’AX/4, 

211 

(12) 

subject to X 2 0, 

where 

A = [R(X’2-1X)-1R’]. 

The Kuhn-Tucker test statistic, KT, is the optimal objective function value 
of QP (12) so that 

KT = X’Aj;/4, 

where % is the Kuhn-Tucker multiplier defined earlier. By our assumptions 
the matrix A is positive definite and (X’Z’-‘X)-’ is nonsingular, hence [see 
Gill, Murray, and Wright (1981) or Avriel (1976) for details] the objective 
functions of the primal and dual problems evaluated at the optimum (b, x) are 

equal. This gives the first of our equalities: LR = KT. 
The Wald statistic measures the difference between the unrestricted and 

restricted estimates of RP and is given by 

By eq. (5) we have R&--Rh=R(h-6)=Ai/2. This implies W=KT. 
Finally, QP (8) can be rewritten in the following form: 

~n(b-~)‘(X’~-‘X)(b-~), 

subject to Rb r r. 
(13) 

This QP is a special case of the generalized distance statistic derived by Kodde 
and Palm (1986) following the logic of Perlman (1969). This statistic measures 
the distance between the unrestricted estimate of p and the set defining the 
null hypothesis. To see the equivalence of QP (13) to QP (8) expand QP (13) 

and utilize the definition of h to show QP (13) also equals QP (9) and hence 
QP (8). This process has also shown that b” is the solution to QP (13) as well as 
the ICLS estimate. A final equivalent test statistic is 

w= (6 - 5)!( XY-‘X)@ - 6). 

Hence, for the case that 2 is known we conclude that LR = KT = W = w. 
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At this point it is convenient to state the three equivalent test statistics for 
the GHM testing problem H: RP = r versus K: R/I? 2 r. In our notation they 
are 

LR = (y - Xb)‘Z--‘( ,v - xi) - (y - Xl+-‘( y _ &), 

Kz-=(h-X)54(X-X), 

w=(z&~+-~(~&~). 

These will be used in section 4 when we derive the joint distribution of these 
statistics and the multivariate inequality constraints test statistics. 

4. Distribution of test statistics under null hypothesis 

Before proceeding with the derivation of the null distribution of our test 
statistics we consider the following special case of our testing problem: 

H: ~1.20 versus K: FERN, 

fi = p + v, v is a (P X 1) vector that is N(0, s2), 
(14) 

and s2 is of full rank P and known. 
Perlman (1969) considered a more general version of problem (14) where the 

set defining the null hypothesis is a closed, convex cone (as opposed to the 
positive orthant) and the covariance matrix, D, is completely unknown. 
Following his logic, we construct the likelihood ratio statistic for this problem 
as the optimal value of the objective function from 

min(fi - Z~)‘ti-‘($ - cl), 
!J 

subject to ZJ 2 0. 

Let ZI represent the solution to this QP. Define 

zu= (ji-$)‘a-‘(fi-p), (16) 

where ZU is shorthand for the null hypothesis of inequality constraints versus 
an unrestricted alternative. 

We must now find the least favorable value of p under the null hypothesis 
to use in constructing an exact size test of this null hypothesis. The usual 
approach proceeds as follows. For this problem, the sample space, in the 
Neyman-Pearson likelihood ratio hypothesis testing framework, is 0 = RP. 
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The positive orthant in P-dimensional space is the subset of 0 where pi lies 
under the null hypothesis. Call this 0,. Following Lehmann (1986) let s be 
the test statistic for our hypothesis test and S the rejection region. If 

sup Pr,(.s E S) = (Y, 
PE% 

then S is the rejection region for a size LY test of our null hypothesis. 
Following this logic we construct a rejection region for any size test of (14). A 
special case of Lemma 8.2 in Perlman (1969) is given below. 

Lemma I. For any p 2 0 and c E R +, the following is true: 

Pr,,,[ZU2 c] I Pr,,,[ZU2 c]. 

The notation Pr,+[ ZU 2 c] d enotes the probability of the event [ZU 2 c] 
assuming that /i is distributed as N(p., s2). This notation will be used through- 
out the remainder of the paper. As an immediate corollary we have 

sup Pr,,,[ZU> c] = Pr,.,[ZU2 c], 
IJ’Q,, 

so that p= 0 is the unique least favorable value for p to specify under the null 
hypothesis to obtain critical values for any size test. 

To relate the inequality constraints test to the much studied multivariate 
one-sided hypothesis test we now discuss the test 

H: p=O versus K: ~20, (17) 

under the same assumptions on $. We follow Perlman’s (1969) presentation of 
this problem because it is the most flexible for our purposes. 

Perlman formulated the likelihood ratio test for (17) as the maximum value 
of the objective function from the following QP: 

subject to p 2 0. 

Clearly, the @ that satisfies (18) is the same fi which satisfies (15). Define 

where EZ denotes the equality constraints null hypothesis versus the inequality 
constraints alternative hypothesis. We now state the following theorem proven 
in the appendix. 
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Theorem 1. Given p = 0 [the least favorable value of u for hypothesis test (14) 

and the null value of p for hypothesis test (17)], we have the following result: 

Pr,,,[IUk c,", EI 2 cE,] 

The joint distribution of IU and EI is a weighted sum of two sets of 
independent chi-squared distributions ranging from zero to P degrees of 
freedom. A xi for k = 0 is simply a point mass at the origin. By redefining the 
index variable k, we have the following corollary. 

Corollary 1. For the hypothesis test H: p 2 0 versus K: ~1 E RP, the distribution 

of the likelihood ratio statistic satisfies 

supPr,,.[IU2c]=Pr0,,[ZU2c] 
p20 

= i Pr[xi>c]w(P, P-k,L?). 
k=O 

We also have the well-known distribution of the multivariate one-sided test 
statistic. 

Corollary 2. For the hypothesis test H: p = 0 versus K: p 2 0, the null 
distribution of the likelihood ratio statistic is 

Pr,.,[EZ2c]= i Pr[x:Z?c]w(P,k.fi). 
k=O 

The weight, w( P, k, a), is the probability that jIi has exactly k positive 
elements. The sum of the weights from 0 to P is one. These weights depend 
explicitly on the covariance matrix of 1;. Closed form solution for the weights 
are available for the cases when P I 4 [see Kudo (1963) for these formulae]. 
Shapiro (1985) provides alternative closed form expressions for these weights 
for the case that P = 4. Both of these authors provide detailed derivations of 
these formulae. There are various numerical methods available for the cases 
that P 2 5. Bohrer and Chow (1978) give an algorithm which is designed to 
calculate these weights up to the case that P = 10. However, for P 2 8, the 
complexity of the calculations could make these numerical methods pro- 
hibitively expensive or simply intractable. 
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A final methodology for computing these weights when P L 8 is to use 
Monte Carlo techniques. Here the researcher takes, say 1000, draws from a 
multivariate normal distribution with mean zero and covariance matrix 0. For 
each draw he computes ,ii and counts the number of elements of the vector 
greater than zero. In this case w( P, k, 0) is computed as the proportion of the 
1000 draws that p has exactly k elements greater than zero. This technique has 
the following advantages. No expensive numerical integration techniques are 
required. There are no limits on the values of P for which it is applicable. 
However, the resulting weights are not exact because this is a Monte Carlo 
technique. Preliminary comparisons of this technique with exact techniques 
are very encouraging in terms of the degree of agreement with the exact 
procedure. Nevertheless, what is clear from the discussion of these weights is 
that their exact calculation for P 2 8 is a major stumbling block to the 
widespread application, to higher-dimensional problems, of this testing frame- 
work. 

Fortunately, in many instances the researcher may not need to compute 
these weights because there are upper and lower bounds on the distributions 
given in Corollaries 1 and 2.3 These bounds are utilized in the same manner as 
the bounds for the Durbin-Watson statistic. Kodde and Palm (1986) derive 
upper and lower bounds on the null asymptotic distribution of their nonlinear 
inequality constraints distance test statistic. For the general version of their 
testing framework, Wolak (1987) shows these bounds are not tight. Neverthe- 
less, these bounds do eliminate the need to compute the weights if the value of 
the statistic does not fall between the upper and lower critical values. Follow- 
ing the logic of Kodde and Palm (1986) and the results of Perlman (1969, 
theorem 6.2), who derived bounds on the null distribution of his test statistics, 
we obtain 

Ly = inf Pr, c 
n ’ 

[Z2c,]=:Pr[~f2c,], (19) 

and 

(Y = sup Pr,,, [22c,]=+Pr[~2,_~2c,] +fPr[x2p2cU], 
12 

(20) 

where Z can be either the IU or EI statistic and (Y is the size of the hypothesis 
test. For tests (14) and (17), these bounds are tight because, as stated earlier 
and different from the case of nonlinear constraints, the parameters of the 
covariance matrix of fi are assumed to be functionally independent of ~1. If the 
value of the test statistic is less than c,, the null hypothesis cannot be rejected. 
If the value of the statistic is greater than c,, the null hypothesis is rejected. 
Kodde and Palm (1986) provide a table of c, and c, for tests ranging in size 

‘I am grateful to a referee for suggesting these bounds. 
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from 0.25 to 0.001 and degrees of freedom from 1 to 40. Therefore, the weights 
must be calculated and the exact critical value obtained only if these bounds 
yield inconclusive test results. 

Given the results of Theorem 1, we now derive the joint distribution of the 
likelihood ratio statistics from the GHM hypothesis test and multivariate 
inequality constraints test. Once again our inequality constraints test is com- 
plicated by a null hypothesis that does not specify a unique value for p or that 
it must satisfy a system of linear equalities. The null hypothesis requires that /3 
satisfy a system of linear inequalities. For this reason, we must find a least 
favorable value of /3 E C = { filR/I 2 Y, p E RK }, the set defining the null 
hypothesis, to compute the exact null distribution of our test statistics for any 
size test. 

First we establish the least favorable value of /3 E C and then proceed to 
derive the joint distribution of the GHM and inequality constraints test 
statistics. Let R* be a ((K - P) x K) matrix such that when appended to R, 

the matrix T = [R’ R*‘] is of full rank K. There exists an R* because R is of 
rank P by assumption. Let t = [r’ r*‘]‘, where r* is a ((K - P) X 1) vector of 
known constants. Using the definition of T and t, the w statistic becomes 

w= m$[Tb-t]-[T&t])‘T’-‘(X’ZplX)Tp’ 

x([Tb-t]-[T&t]), 

subject to Rb 2 r. 

Set $ = Tfl - t, f= T6 - t, and f = Tb - t. The QP determining the w statis- 

tic is now 

w= Iyf-fyqjy(f-f). 

subject to fi 2 0, 

where V(f) = T( X’Z-IX)-‘T’ and fi is the first P elements of f. Define $~r 
analogously to fi so that + = (+;, ~5)‘. Because g(x) = TX - t is a nonsingular 
affine transformation the testing problem in terms of I#I is the same as the one 
in terms of p. The results of Lemma 1 applied to the test H: r#~t 2 0 versus K: 
+r E RP implies that +r = 0 is the least favorable value of +r in the set 
defining the null hypothesis. The function g(x) implies that the p correspond- 
ing to $r = 0 is any /3* such that R/3* = r. Consequently the least favorable 
value of /3 E C is any /3* that satisfies the inequality constraints as equalities. 
We now state the following theorem whose proof follows directly from that of 
Theorem 1. 
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Theorem 2. Given any /3* such that RP* = r (the least favorable value of /3 for 
the inequality constraints hypothesis test and the null value of /3 for the GHM 
hypothesis test) we have the following result: 

Pr,.,,,,-1,,-l[ZU2~,,, EZ>c,,] 

= 5 Pr[x2pmk 2 cIu] Pr[xi 2 cEI] w(P, k, A), 
k=O 

where ZU is the LR, KT, ‘W, or Wstatistic and EZ is any of the three GHM test 

statistics. 

Redefining the index variable k gives the following corollary: 

Corollary 3. For the hypothesis testing problem H: RP 2 r versus K: p E R”, 
the distribution of ZU satisfies the following property: 

P 

= kFo Pr[xi 2 c] w(f’, P-k, A), 

where /I* is such that R/3* = r. 

The distribution derived by Kodde and Palm (1986) specialized to the case 
of linear models and linear inequality constraints, is precisely the above 

distribution. Consequently, we can apply their bounds on the null distribution 
discussed earlier directly to this testing problem. 

Depending on how we parametrize 2, the bounds given by (19) and (20) will 
be slack or tight.4 If we restrict ,E only to be a (TX T) positive definite 
matrix, the bounds on the null distribution are tight. The full column rank of 
X and the full row rank of R guarantees that, for any (P x P) positive definite 
matrix Q and fixed matrices X and R, there exists a positive definite matrix 2 
which satisfies Q = R( X’I-‘X)-‘R’. See Graybill (1969, theorem 6.3.3) for 
the justification for this claim. Computing the infimum and supremum of the 
probability of rejection with respect to 2 for the distribution in Corollary 3 is 
exactly analogous to computing these quantities with respect to ti in (19) and 
(20) so that the bounds given by those two equations are tight. However, when 
J? is functionally dependent on a fixed, finite number of parameters, as is the 
case for the models discussed at the start of section 2, these bounds will, in 

41 would like to thank a referee for bringing up this point 
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most cases, be slack for that specific parametric class of disturbance covari- 
ante matrices. For example, if the errors follow a stationary AR(l) process, 
for fixed X and R any positive definite matrix Q cannot be expressed as 
R( X’Z-‘X) for a Z within the class of covariance matrices derived from this 
family of disturbance processes. The appendix contains a simple example of 
the slackness of these bounds when 2 arises from an AR(l) process. 

We now show the duality relation claimed to hold between the inequality 
constraints test in terms of p and the multivariate one-sided test in terms of A 
by deriving the null distribution of the inequality constraints test statistics in 
terms of h and h. Recall that the least favorable value of p E C for 
constructing exact critical values is any p* such that R/l* = r. This implies 
that x, as defined in eq. (6) is N(0,4A -‘). For other p E RK, the expectation 
of h is X as defined by eq. (7). 

We can transform the QP defining the KT statistic into a QP solely in terms 

of x and X. First, let f = r - R6. Complete the square of the objective 
function of QP (12) by adding and subtracting ?A-‘G. In the new notation 
this QP becomes 

KT= m;x - [(X-2A-‘B)‘A(h-2A-‘9)]/4+fi’A-‘i, 

(21) 
subject to X 2 0. 

From eq. (6) we note that 

x = 2A -1; and AfAx/ = E’A -‘f . (22) 

Utilizing (6) and (22) we can rewrite (21) as 

KT= mrX’AX/4-(h-X)‘A(X-i)/4, 

subject to X 2 0. 
(23) 

In QP (18), if we replace p by h and 0 by 4A-‘, it becomes QP (23). 
Consequently, QP (23) is a likelihood ratio statistic for a multivariate one-sided 
test in terms of h. In addition, the solution to this QP is x, the KT multiplier 
vector defined in section 2. Because R/3 = r [which implies E(h) = X = 0] for 
an exact size test of our null hypothesis, the inequality constraints test in terms 
of our dual variables is the null hypothesis that the Lagrange multiplier is zero 
versus the restricted alternative that it is greater that or equal to zero. For A as 
defined in eq. (7), we have the following theorem by an application of 
Corollary 2. 
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Theorem 3. For the hypothesis testing problem H: X = 0 versus K: A 2 0, the 
null distribution of IU is 

P l),&+[IUrc]= i P[&2c]w(P,k,4A-‘), 
k-0 

where IU represents the LR, KT, W, or w statistic. 

Note that the two weighted sum of x2-distributions given in Corollary 3 and 
Theorem 3 are different. The weights in Corollary 3 (the primal approach to 
the null distribution) depend on A and P - k, whereas those in Theorem 3 
(the dual approach to the problem) depend on 4A-i and k. In the appendix 
we prove w(P, k, T) = w(P, P - k, UT-‘), u > 0 for k = 0,. . . , P. This gives 
the following result. 

Corollary 4. For hypothesis tests of the same size, the inequality constraints test 
H: R/3 2 r versus K: R E RK is equivalent to the multivariate one-sided test 
H: X = 0 versus K: X 20. 

We can think of this result as an extension of the well-known duality result 
in testing multivariate equality constraints which states that H: RP = r versus 
K: RR # r and H: X = 0 versus K: X # 0 are equivalent tests. Wolak (1988) 
derives the general form of this duality result for multivariate hypothesis tests. 

It is natural at this point to discuss the power of these tests. This, as has 
been discussed by various researchers, is extremely difficult because the weight 
function, w( P, k, a), is no longer valid for computing the distribution of the 
test statistic under the alternative hypothesis. For testing problem (14), under 
the alternative hypothesis, say p< 0, the probability that p has exactly k I P 
positive elements is no longer equal to sums of products of N(0, 52) orthant 
probabilities [see (A.@ in the appendix], because E(F) =/L # 0. For this 
alternative, suppose a p is computed that has exactly k positive elements. 
Partition @ and p as is done in the appendix so that p = (p;, pi)‘, Briefly, 
/Lii E RP-k contains all of the zero elements of F and p2 E Rk contains the 
remaining elements of i which are all positive. As shown in the appendix, the 
value of the likelihood ratio statistic for testing problem (14) conditional on fl 
having exactly these k positive elements is 

IU = p,s2,‘fi,, 

where pi is N(pi, 52,,) for this alternative hypothesis. Given this distribution 
for ii, from Theorem 1.4.1. of Muirhead (1982) the distribution of ZU 
conditional on pi = 0 is noncentral &i-squared with P - k degrees of freedom 
and noncentrality parameter 6 = &LJi;i~,. In addition, this noncentrality pa- 
rameter depends on precisely which k of the elements of fi are positive; in 
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other words, exactly which elements of Z.L comprise pi. Consequently, much of 
the symmetry which simplifies the derivation of the null distribution when 
/.L = 0 is lost. This complication becomes even more problematic for higher 
dimensions because there are numerous ways ji can have exactly k positive 
elements, and a different noncentral &i-squared distribution may arise if, for 
instance, the first k elements of 9 are positive than if any other k elements of 
fi are positive. These complications make power calculations theoretically 
possible but computationally intractable for nearly all types of testing prob- 
lems and alternatives with P > 2. 

Power calculations for certain alternatives for the case that the matrix 
(X’Z-‘X) = 0’1 (I is the identity matrix), the null hypothesis is j3 2 0, and 
p E R2 are reported in Yancey, Bohrer, and Judge (1982). Although the 
condition (X’t:-‘X) = a21 rarely if ever occurs in practice, these calculations 
help to provide intuition about the power properties of these type tests. The 
power of this test, for testing our inequality constraints null hypothesis, is 
greater, for all alternatives in the direction R/3 5 r, than the two-sided test. H: 
R/3 = r versus K: R/3 f r because it takes into account the fact, in our case, 
that h as defined by (7) is always greater than zero under the alternative. 
Bartholomew (1961), Barlow, Bartholomew, Bremner, and Brunk (1972) and 
Hillier (1986) discuss the power properties of the multivariate one-sided test. 
In particular, Hillier (1986) compares the power properties of the classical 

two-sided F-test, the likelihood ratio test, and a one-sided r-test in a particular 
direction for the linear regression model. Based on his results, the likelihood 
ratio test is preferred. Power calculations for the multivariate one-sided test 
are relevant for discussing the power properties of our test procedure by 
Corollary 4 which states that for any multivariate linear inequality constraints 
test there is an equivalent multivariate one-sided test. See Wolak (1988) for 
more on the exact relation between these two test procedures and its implica- 
tions for power calculations. 

We now list some of the properties possessed by our test. As stated in 
Perlman (1969) for all testing problems of his general class (see section 1 for 
the definition of this class), the power of the test approaches one uniformly in 
2 and /? as the distance, in the norm of the covariance matrix of 6, between j3 
and where it lies under the null hypothesis tends to infinity. The test is biased. 
The least favorable distribution is obtained at a j3 such that R/3 = r, so the 
power is smaller for values of p elsewhere in C. By continuity of the power 
function of the test statistic, there are values of j3 not in C where the power is 
smaller than when fi is such that Rj? = r. However, our test is consistent both 
when 2 is known and unknown but consistently estimated. This can be 
seen by the following logic. Make the standard assumption that 
lim T_7’-1(X’F1X) + Q, a positive definite matrix [Theil (1971, p. 398)]. 
Then under both the null and alternative hypotheses, T’/‘(& - p) converges 
in distribution to N(0, Q-l). Consider the case that RP $ r. We have the 
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following: the probability limit of (plim) h = ,B and plim b # /?. Therefore we 
have plim (& - 8) # 0. Let c denote the critical value for a size (Y test of our 
null hypothesis. Utilizing the w form of our statistics we obtain 

(24) 

Becauze [T-‘( X’Z’-‘X)] converges to a positive definite matrix Q, we know 
that (b - L)‘[ T-‘( X’F’X)]( b - b) converges in probability to some quantity 

strictly greater than zero. Consistency of the test follows because c/T + 0 as 
T + cc. However, if Rfi 2 r, then we have plim 6 = ,&, plim( fi - h) = 0, and 
the above construction is not possible. To show consistency of the test for the 
case that 2 is unknown but estimated consistently we replace 1 by its 
consistent estimate and note that as T + cc this estimate converges in proba- 
bility to 2. In this case the distribution in (24) is the asymptotic distribution of 

our test statistics. Besides the usual regularity condition necessary for the 
asymptotic normality of the GLS estimate of j? calculated using a consistent 
estimate of 2 [Theil (1971, p. 399)], the above construction does not change. 

5. Test statistics when error covariance matrix is unknown 

We now consider the case that _E is unknown but depends on a finite 
number of parameters. The parameters of 2 cannot be functionally dependent 
on /I or the monotoncity property of the power function crucial to deriving an 
asymptotically exact null distribution of the test statistics will fail. A condition 
of Perlman’s (1969) Lemma 8.2 (a more general version of our Lemma l), 
which requires that (X’_Y’X)-’ not vary as p varies over the parameter 
space, is violated.5 This assumption is also used to construct the conditional 
likelihood ratio statistics necessary to prove the small sample inequalities for 
our statistics when 2 is unknown [see Savin (1976, pp. 1314-1315)]. Conse- 

quently, these inequalities hold for all models that can be written in the form 
of a linear regression model with a general covariance matrix of the distur- 
bances. See the first part of section 2 for a list of these models. 

We now illustrate these small-sample inequalities which hold between the 
three inequality constraints test statistics. We assume the existence of unique 
unrestricted ML and restricted ML estimates of p and E, which we denote 

5This restriction is not troublesome for extending our results to an asymptotic framework for 
the case of linear econometric models and linear constraints. The extension to the case of 
nonlinear inequality constraints in the context of nonlinear econometric models violates this 
assumption [Wolak (1987)]. Wolak (1989) derives a large sample methodology for testing nonlin- 
ear inequality constraints in this nonlinear model context which circumvents this assumption. 
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h,, l? and Jr, 2, respectively.6 Throughout the remainder of this section a hat 
denotes an unrestricted estimate. An estimate calculated under our restriction 
Rb 2 r is denoted by a tilde. The subscripts on the estimate denote which 
estimate of X was used to calculate the estimate of R. A subscript u indicates 
the estimate was based on 2 and a subscript r implies the estimate is based on 
2. Hence 6, is the constrained ML estimate of /3 calculated using 2 and & is 
the unconstrained ML estimate computed using 2. This follows the conven- 
tions of Breusch (1979). 

We can define residuals for the four estimators of /? as follows: 

Sj=y-XLj and .Fj=y-Xij, j=u,r. 

Let 

A = [ R( x~FX)-~R~] and a= [ R( XCFX)-~R~]. 

The likelihood function takes the standard form: 

L(b, Z) = (2m)-r’Zdet(Z)-“2 exp[-i(y-Xb)‘,Y-‘(y-Xb)]. 

The Wald statistic traditionally tests the amount the unrestricted estimate 
differs from the hypothesized restrictions and so it is based on the unrestricted 
estimate of Z. This statistic is defined as 

W=(R&-R@i-‘(Rii,-Ri,). 

In light of our additional notation eq. (5) becomes 

ij - gj = ( X’Z-‘X)-1R’j(j/2, j=u,r, (25) 

where X = 2 if j= u and Z = 2 if j= 
solving for xj yields 

r. Multiplying both sides by R and 

ij=2A-‘(R6j-R$j), (26) 

where A = A^ if j = u and A = x if j = r. Eqs. (25) and (26) give the following: 

~,=6,+(xlp-lx)-lR’a-l(Rg,-~g,). 

In terms of residuals this implies 

El” = z, - X( X’i’-‘X)-‘Rd-‘( R&- R6,). 

‘We should note that in some cases there may be some difficulty in finding 6, and J? due to 
multiple solutions to the likelihood equation or failure of the usual iterative methods used for their 
calculation. 
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Recall the following: 

223 

This allows us to write: 

Rearranging, we note this implies 

I$/ = @ - 1& - ;;J- 1& 

= -2log[L(&,~)/L&,e)] 
(27) 

= -2log sup L(ble)/supL(blQ . 

[ Rhzr h 1 
The KT statistic tests the significance from zero of the Kuhn-Tucker 

multiplier and is based on the restricted estimate of Z. We define it as follows: 

Eq. (25) implies that 

In terms of residuals we have 

El, = EI, - x( YPX) %x/2. 

Once again X’e-%, = 0, so that 

This gives us the following set of equations: 

KT = @ - i& - @ - ii, 

= -2log[L(&, 2)/L@, e,] (28) 

= -2log sup L(@) 
I 

supL(@) . 
Rh>r i h 1 



224 F.A. W&k, Testing inequulrt_v constraints 

Finally, the LR statistic is given by 

L(b,E)/supL(b,Z) . 
I h.1 

(29) 

We now recall some inequalities from Breusch (1979) modified for our 
problem: 

supL(b(Z) I supL(b,Z) = supL(b@), 
h h.2 h 

and 

sup L(b@) I sup L(b,2) = sup L@(Z). 
Rhrr Rh>r.Z‘ Rh>r 

Viewing eqs. (27) (28), and (29) in light of these two sets of inequalities we 
obtain: W 2 LR 2 KT. This ordering agrees with that derived by Breusch 
(1979) and Berndt and_Savin (1977) for their equality constraints statistics. 
Our fourth statistic, W, is equal to the W statistic if the unconstrained 
estimate of E is used in its computation. It is equal to the KT statistic if the 
constrained estimate of 2 is used. 

We now consider the asymptotic distribution of our three test statistics 
under the null hypothesis. We assume that 2 and 2 are consistent estimates of 
Z and that the usual regularity conditions necessary for the asymptotic 
normality of the GLS estimate of /I using an estimated covariance matrix of E 
hold [Theil (1971, p. 399)]. By an application of Slutsky’s theorem these 
statistics all have the same asymptotic distribution as the test statistics 
evaluated with the true covariance matrix Z. As discussed in GHM (1982), the 
same logic holds for the GHM statistics computed with a consistent estimate 
of Z. Thus all of the results of section 4 carry through asymptotically. 

6. Application to demand analysis 

In this section we apply our statistics to a hypothesis testing problem which 
arises frequently in single-equation demand analysis. Consider the following 
simple double-log demand function: ’ 

In Q, = a! + & In PE, + & In PG, + & In K 

+&LX, + &D2, + P,jD3, + Et, (30) 

where E, = PE,_~ + ql, and qr is N(0, a2). If we write (30) in matrix notation as 

‘This model was used to illustrate an application of our test procedure. There may be other 
problems with its specification which may lead us to reject it as the proper model for aggregate 
residential electricity demand. 
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y = Xp + E, then E is N(0, a*V(p)), where V(p) is as defined in Theil (1971, p. 
252). For our data set, Q, is aggregate electricity demand per capita for the 
residential sector, PE, is the average price of electricity to the residential 
sector, PG, is the price of natural gas to the residential sector, and Y, is 
income per capita.’ Seasonal dummy variables Dl,, D2,, and 03, were 
included because the data from which our demand function was estimated are 
available on a quarterly basis for a total of 88 observations from the beginning 
of 1961 to the end of 1983. 

We are interested in testing the null hypothesis that the subvector 
(-&, ,BZ, &)’ is greater than or equal to zero. For model (30) in matrix 
notation, our matrix R is a (3 x 7) matrix with zeros everywhere except for 
- 1 at the (2,2) position and 1 at both the (3,3) and (4,4) positions. Our 
vector r is equal to zero. 

Our technique for calculating the inequality restricted estimator differs from 
the standard QP algorithm because of the very simple structure of our 
constraints. We run all possible regressions which occur by zeroing out each 
one of our three variables being tested until we find the regression yielding the 
lowest weighted sum of squared residuals as well as satisfying our inequality 
constraints. If that procedure fails to yield estimates satisfying our restrictions, 
we perform regressions zeroing out pairs of the variables under consideration 
until we find the minimal weighted sum of squares residuals regression 
satisfying the constraints. For hypotheses of this low a dimensionality and 
simplicity this technique is a very easy way of solving the QP necessary to 
obtain our ICLS estimates using most any available econometric software 
package. 

Table 1 contains the unconstrained and inequality constrained estimates for 
eq. (30). Standard errors for the estimates are in parentheses below the 
coefficient estimates. Both of the model estimations yield consistent estimates 
of u* and p which are used to construct the consistent estimates of o*V(p) 
necessary to compute our test statistics. Table 2 contains the W, LR, and KT 
test statistics, which obey the inequalities calculated in section 5. 

As discussed in Kudo (1963) and in the appendix, the weights used to 
calculate the null distribution of our test statistics depend on the correlation 
coefficients and partial correlation coefficients of [ R( X’Z-‘X)-‘R’]. Utilizing 
the three correlation coefficients ( p12, pr3, and pZX) and the three partial 
correlation coefficients ( p12,3, p13,2, and p13,r) from the unconstrained covari- 
ante matrix, [R(X’Z--‘X)-‘R’], we calculate the weights that enter the null 
distribution of our test statistics. We utilize the closed form expressions for the 
weights given in Kudo (1963). Under both the null and alternative hypotheses 
these estimates of the correlation coefficients and partial correlation coeffi- 
cients are consistent. 

“A less up-to-date version of this data set was used by Sutherland (1983). This paper contains a 
detailed discussion of the sources for this data set. 
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Table 1 

Unconstrained and constrained model. 

Unconstrained model 

- 0.918 
(0.685) 

0.205 
(0.464) 

-0.115 
(0.127) 

- 0.289 
(0.102) 

- 0.179 1.811 0.113 - 0.048 0.143 0.667 
(0.079) (0.090) (0.012) (0.012) (0.018) (0.082) 

Constrained model ( pz = 0) 

0.000 1.666 0.121 - 0.049 0.109 0.653 
(0.000) (0.062) (0.012) (0.012) (0.011) (0.082) 

Table 2 

Test statistics. 

Wald Likelihood ratio Kuhn-Tucker 

6.321 5.581 4.448 

The level (Y critical value for our test statistic is the solution of the following 
equation in c: 

t w(3,3-k,S2)@,(c)=l-a, (31) 
k-0 

where !Dk(c) is the distribution ftnction for a &i-squared variable with k 
degrees of freedom and D = [R( X’Z-‘X))‘R’]. Eq. (31) can be solved via any 
numerical method for finding the zeros of a univariate function. 

There is another methodology for performing this hypothesis test. We 
simply calculate the probability that a random variable with the null distribu- 
tion of our test statistics takes on a value greater than the test statistic. In 
other words, if G(x) is the distribution function of our statistics under the null 
hypothesis, we calculate 

l-G(X)= f: w(3,3-k,3)Pr(x~2X), 
k-l 

where X is either the W, LRI or KT statistic. The above summation begins 
with k = 1 because Pr(xz 2 6) = 0 for all 6 > 0. To calculate Pr(Xi 2 X) we 
can either utilize a numerical integration procedure for the &i-squared distri- 
bution function or simply interpolate the relevant probabilities utilizing the 
tables for the &i-squared distribution. Table 3 contains the values for the 
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Table 3 

Weights and critical values. 

k=O k=l k=2 k=3 

Weight 0.068 0.347 0.432 0.153 
Pr(X: > W) 0.000 0.012 0.042 0.099 

Pr(x; > LR) 0.000 0.018 0.061 0.134 

Pr(x; 2 KT) 0.000 0.035 0.108 0.217 

l-G(W)=0.037 
1 - G( KT) = 0.092 
c/ = 2.706 

1 - G( LR) = 0.053 
Critical value = 5.714 

c, = 7.045 

weights and Pr( Xi 2 X) and 1 - G(X) for each test statistic. The critical value 
for our hypothesis test at a 0.05 level of significance and the same size values 
for cI and c, obtained from Kodde and Palm (1986) are also in the table. Note 
that all of our statistics are greater than c, and less than c, so that we must 
compute the asymptotically exact critical value. 

Comparing our test statistics to the critical value, we find that the null 
hypothesis cannot be rejected at a 0.05 level for the LR and KT test statistics. 
As expected, the probability values, 1 - G(X), confirm the hypothesis test 
results. The results of the LR and KT tests conflict with a Bonferroni-type 
approach to testing our null hypothesis based on a combination of individual 
asymptotic r-tests applied to the unconstrained model. Suppose we performed 
the three one-sided t-tests H: pi 2 0 versus K: p, < 0, i = 2,3, and H: & 5 0 
versus K: & > 0 for the unconstrained model such that c?,,(ll, = 0.05, where 
(Y; is the size of the ith individual t-test. We would reject the null in favor of 
the alternative at a 0.05 level of significance for any allocation of the overall 
level of significance to the three individual tests such that crz > 0.02. This 
anomaly is due to the high degree of correlation between the three estimated 
parameters under examination. This causes the standard Bonferroni bound for 
computing the overall level of significance to be quite slack. This high degree 
of correlation is the major shortcoming associated with applying this 
Bonferroni-type approach to testing multiple inequality constraints. 

Given that we accepted the inequality constraints null hypothesis implied by 
economic theory for the KT and LR statistics and that we rejected the 
standard two-sided null hypothesis that these parameters are jointly zero 
versus the unrestricted alternative (this test was performed but not reported), 
following the logic of Hogg (1961), we can test the null hypothesis that & = 0, 
i = 1,2,3, versus the restricted alternative that pi I 0 and p, 2 0, i = 2,3 (one 
of these weak inequalities strict). If we reject this null hypothesis in favor of 
the restricted alternative, this outcome, in combination with the other test 
results, provides further evidence that the hypothesized inequality constraints 
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hold strictly for at least one element of the parameter vector under examina- 
tion. We should emphasize that rejecting the point null hypothesis, p, = 0, 
i = 1,2,3, in favor of the restricted alternative alone provides little evidence for 
the validity of imposing inequality constraints on the parameters. This test 
result in isolation says that imposing inequality constraints on the parameters 
is significantly less objectionable, statistically, than imposing these same 
constraints as equalities. If we want to test the validity of inequality con- 
straints we should test them as a null hypothesis. If this null hypothesis is 
accepted, proceeding to apply the GHM test to determine whether the 
constraints hold as equalities versus inequalities allows us to further distin- 
guish where the true parameter vector lies. Going this next step eliminates the 
set of p such that R/3 = r from the set of possible values of p which caused us 
to accept the inequality constraints null hypothesis. And as discussed by Hogg 
(1961), these two hypothesis tests are independent so that exact overall 
significance levels can be easily computed. Following this procedure, we 
computed the three GHM statistics given at the end of section 2. For each of 
the statistics the null hypothesis that these coefficients are jointly zero was 
rejected in favor of the hypothesized inequality constraints alternative at a 
0.05 level of significance. This discussion and our testing results illustrate why 
the GHM test and multivariate inequality constraints test are useful for 
different purposes. For testing inequality constraints, our recommendation is if 
the inequality constraints null hypothesis is accepted, the independent GHM 
test procedure can then be used to determine if it was because RP = Y or 
because at least one of the weak inequalities in R/3 2 r holds as a strict 

inequality. 

7. Conclusions and extensions 

In this paper we devised a methodology for testing general linear inequality 
restrictions within the context of linear econometric models. As noted earlier 
our results can be extended to the linear simultaneous equations model. The 
distance test approach taken by Kodde and Palm (1986) is available for 
simultaneous equations estimators by computing the @ statistic replacing 
(X’Z-‘X) in (13) by the appropriate estimate of the inverse of the asymptotic 
covariance_matrix of parameter estimate. In the notation of Theil (1971, p. 
509) the W statistic for the 3SLS model is 

subject to R6 2 r, 

where Z is replaced by a consistent estimate. The unconstrained 3SLS esti- 
mate is denoted by s^ and can be calculated utilizing any unrestricted consis- 
tent estimate of ,E which we denote by 2. 
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The standard methodology for calculating the LR, W, and KT statistics 
discussed in section 3 can be modified to apply to linear simultaneous 
equations estimators. In the same notation, the weighted sum of squared 
residuals is defined as 

S(6)=(y-Z6)$.9~x(xYf-1x,)(~-zs). 

The inequality constrained 3SLS estimator, 8, is the solution to 

min S(6) subject to R6 2 r. 
6 

Let x be the Kuhn-Tucker multiplier vector associated with the constraints 
R6 2 r. The likelihood ratio statistic for the 3SLS estimate is the difference 
between the weighted sum of squared residuals from the two model fits: 

LR = S(8) -S(8). 

The same estimate of ZS should be used to compute S(8) and S( 6) in 
constructing this statistic. The Wald statistic is 

The KT statistic is 

KT=A’jR[Z’(f-‘OX(X’X)-‘X’)Z]-IRlji/4. 

These three statistics are asymptotically equivalent. Their null distribution for 
any asymptotically exact size test of H: R6 2 r versus K: 6 E R K is the 
weighted sum of chi-squared distributions given in Corollary 3 with the matrix 
A consistently estimated by (R [ Z’( 2-l 8 X( X’X) ‘X’)Z] ‘R’). The W, KT, 

and LR statistics for the 2SLS model can be constructed and the null 
asymptotic distribution obtained as a special case of this procedure. 

Appendix 

A.1. Proof of Theorem 1 

First we state and prove the following lemma: 

Lemma A.1. For any fi, fi E RP the following statements are true: 

(i) F’s)-‘(p - @) = 0, 

(ii) fi’Q-‘$ _ /I’oP1p = (p _ k)‘s)-‘(fi - p), 

(iii) eitherp,=O and [-52-‘(@--p)],>O orfi,>O and [-52-‘(fi-fi)J,=O, 

for all i = 1, . . . , P. 
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Proof. Let f(p) denote the objective function of QP (15). We can establish (i) 
by recalling the Kuhn-Tucker conditions for this QP: 

afG> 
- = -2a-‘(fi-9 20, 

all. 

and 

afw 
p ap 
-‘- = -2jy5)-‘(fi - jj) = 0. (A.11 

Rearranging the second equation in (A.l) yields: jX?-‘jIi = fi’ti-‘i. Substitut- 
ing this equality back into the objective function of QP (15) gives (ii). We 
obtain (iii) from both equations in (A.l) and the restriction that F 2 0. 0 

By (ii) of Lemma A.1 we have the following relationship between the two 
test statistics: 

EI+‘Q-‘fi=$‘Q-‘$-IU, (A-2) 
because 

IU=(/i-fi)W’(fi-6). 

Suppose that fi has k positive elements. Partition II, b, and j? such that 
,Z’ = (F;, pi), where jil = 0 and ,fi2 > 0. For this ,G we have p, E RPFk and 
p2 E Rk. Let 52-l = C. Partition C and s2 conformably to p so that 

Cl1 Cl2 
c= c 

[ 1 21 c22 ’ 

where C;, = C,,. Part (iii) of Lemma A.1 allows us to write the following set of 
equations: 

- C11@1- Pl> - Cl,(P, - P2> 2 09 

- C,,(Pl - a,) - c22G2 - $2) = 0. 

Using pl = 0, we can solve (A.3b) for ii2 as follows: 

/I& = fi2 -I- c;1c2,/?, = p2 - s2#&&. 

Utilizing (ii) of Lemma A.1 and multiplying out, we obtain 

zu= (p-fi)‘C(/I-it) 

(A.3a) 

(A.3b) 

(A.4) 

= lwll!4 + awl2F2 + W22P2 - lw22fi2. (A.5) 
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By (A.4) we have 

Substituting this expression into (AS) gives 

IU = I;; [ c,, - C&Vzl] 1;1= p;q&, 64.6) 

where the second equality follows from the partitioned matrix inversion 
lemma. Because fir is N(0, fir,), conditional on p having k positive elements 
IU is distributed as a x$_~. By Theorem 1.4.3 of Muirhead (1982) and eqs. 
(A.6) and (A.2) the distribution of El conditional on fi having k positive 
elements is xi. In addition, by straightforward but tedious application of the 
results of Problem 1.23 in Muirhead (1982) these two &i-squared distributions 
are independent. 

Because E(b) = 0, this joint conditional distribution depends only on the 
number of positive elements of i and not which specific elements of it are 
positive. Consequently, we can repeat this same procedure for all partitionings 
of p such that the number of nonzero elements of fi is k. This yields the 
(k + 1)th term of the joint distribution: 

This term is the joint distribution of IU and EI conditional on the event { fi] 
k elements of fi are positive}, multiplied by the probability of that event, 

w(P,k, a). 
Repeating this procedure for all k from zero to P yields the following joint 

distribution: 

i Pr( x2pL 2 cIu -)Pr(xZk2CEI)w(P,k,~). 0 
x=0 

A.2. Proof of relationship between weights 

Weclaimthatw(p,k,S2)=w(p,p-k,aS2-’),a>Ofork=O,...,p,where 
p is the dimension of the N(0, s2) vector, p. First some results from multivari- 
ate normal distribution theory. If the vector p’ = (&, fi$), is N(O,52), then the 
conditional distribution of F1 given ,G2 = 0 is N(O,[D,, - Qn1z9,21Q,,]), where 
52 is partitioned conformably to fi. 

For the sake of brevity, in our proof we use eq. (3.41) from Kudo (1963) and 
the notation relevant to his problem. He defines the null distribution of the 
statistic used to test H: p = 0 versus K: p 2 0 in the following fashion: 
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where the summation runs over all of the 2p subsets of P = (1,. . . , p } 
(P = the set of integers from one to p), which are indexed by M. Kudo defines 
n(M) as the number of elements in M and M’ as the complement of M 
relative to P. The matrix 9, is the covariance matrix of the vector composed 
of elements of 6 given by fi, such that i E M. The matrix fi2,. M, is the 
covariance matrix of the vector composed of the Gi, i E M, conditional on the 
remainder of the elements of fi, fi,, j not an element of M (j E M’). equal to 
zero. P(Z) is the probability that a multivariate normal random vector with 
mean zero and covariance matrix z‘ has all positive elements. In this notation, 

2 xnCM) has a x2-distribution with n(M) degrees of freedom, where x&, is a 
point mass at zero (0 denotes the null set). P( fi2,. p) = 1 and P([ 52,,] -‘) = 
P([D,]-‘) = 1. Kudo’s likelihood ratio statistic, our statistic EI, is denoted by 
z2 and 2; is a constant greater than or equal to zero. Each one of the subsets 
M of P corresponds to one of the 2P disjoint subsets of the positive orthant in 
p-dimensional space where p can lie. For a given set M, the 6 that lies in it is 
given as follows: 

p,=Oif iPM and ,C;>Oif iEM. 

From (A.7) the expression for the weight, w( p, k, a), is 

w( p, k, 0) = c p([fh,l~L) p(9m M’) 
0cMcP 

64.8) 
such that n(M) = k. 

Because we are evaluating sums of products of orthant probabilities from 
multivariate normal random vectors, P(Z) = P(R), where R is the correlation 
matrix associated with Z. Thus the weights, w( P, k, LZ), depend only on the 
correlation matrix of s2. Because the correlation matrix from aZ is the same as 
that from Z, we can assume, without loss of generality, u = 1. Recall the 
following two identities concerning the binomial coefficients: 

=2p, [;)=jppk)- (A.9) 

The first identity implies that the total number of disjoint subsets of the 
positive orthant in p-dimensional space is 2p. The second implies that the 
number of subsets with k elements greater than zero is exactly equal to 
the number of subsets with p - k elements greater than zero, for all k from 
zero to p. If we show that each individual term of the summation comprising 
w( p, k, f2) equals the corresponding term of the summation comprising 
w( p, p - k, Q-l), then because both summations have the same number of 
elements we can conclude that w( p, k, 62) = w( p, p - k, Up’). 
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The term of (A.8) for w( p, n(M), a) associated with the subset M of P is 

p([~,,l-‘)p([~,:,,]). (A.lO) 

The term for w( p, p - n(M), a-‘) corresponds to the set M’ = P - M. It is 

(All) 

Recall the notation used in the proof of Theorem 1 where we set ti-’ = C. Let 
C be partitioned conformably to D for the purposes of our proof. Hence we 
can rewrite (A.ll) as 

p(Lf1-‘1 wb: MI. (A.12) 

The partitioned matrix inversion lemma for both C and D and the expression 
for the variance of the conditional distribution of one subvector from a 
multivariate normal vector given the remaining subvector from this same 
vector yields the following two matrix equalities: 

[Gw]-’ = Cw:,, and &J’,,,,;,,,= [CM]-‘. 

Therefore (A.lO) and (A.ll) are equal. We can continue in this fashion for all 
M c P such that n(M) = m and all corresponding M’ c P such that n (M’) = 
p - m to show that w(p, m, a) = w( p, p - m, Q-l). Since p and m are 
arbitrary we can show this equality holds for any p and all m between 0 
and p. 0 

A.3. Example of slackness of bounds on null distribution for parameterized 2 

Consider model (1) with AR(l) errors as described in section 6. Let X= 
[ el e,] where e, is a (T x 1) vector with one in the i th position and zeros 
elsewhere. Suppose we are testing /3 2 0 for /3 E R2 so that R = I and r = 0. In 
this case ,E = o*V(p) for V(p) given in Theil(l971, p. 252). For this purposely 
simplistic choice of X, R, 2 and Q = R( X’Z’X)~ ‘R’ we have 

Q=,,* ‘+pp2 ;. 

[ 1 (A.13j 

Stationarity of E, requires that IpI < 1. This implies that the modulus of the 
correlation between p1 and p2 is at most l/a. By Corollary 3, for any c > 0, 

Pr,,,(ZU>c)=w(2,1,Q)Pr(x:>c) 

(A.14) 
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Using the weights functions given in Kudo (1963) and taking the supremum 
and infimum of the left-hand side probability in (A.14) with respect to all p 
less than one in modulus implies the following upper and lower bounds: 

(Y = inf Pr, p 
IPI< ’ 

(ZU2c,)=fP(~~rc,)+~Pr(x~rc,), (AX) 

(Y = sup Pr,.p (IU2c,)=iP(~:2c,)+~Pr(x:rc,). (~-16) 
IPI’ 

It is straightforward to show that c, -C cL and c, > cu, so that for B parameter- 
ized by AR(l) errors the bounds given in (19) and (20) are slack. 
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